

Dr. Douglas S. Meade
IWC 26 – August 2018

THE INTERDYME
COOKBOOK

International Model Building Cuisine

Explore the world of Inforum model building using powerful free
software!

 IWC 2018

 1

THE INTERDYME COOKBOOK
International Model Building Cuisine
Operational proof … it’s all theory until you see for yourself whether or not something
works. Julia Child1
This guide to Interdyme model building accompanies Clopper Almon’s text The Craft
of Economic Modeling, which is a three part textbook. This ‘Cookbook’ is designed
for self-teaching, although the help of a trained chef/teacher is always a plus!
Interdyme was designed to help build models that use vectors, matrices and scalar
variables (macrovariables) in a dynamic setting, solving annually for a time frame as
short as 5 years to as long as 100 years. Some call this type of model an
interindustry macroeconomic (IM) model. In a typical model of this kind, the input-
output (IO) quantity and price calculations form the core of the model, with
projections for final demands, employment and value added usually being calculated
using regression equations. Macrovariables can be handled flexibly, in a way that
easily leads to the combination of regression equations and identities.
The materials needed to work through the Cookbook are not as big or as expensive
as those required for real-life cooking. All of the software and data used here are
available in the form of a datastick or thumb drive, either provided directly or
downloadable. All you need in addition is access to a computer. At present (2018)
the software still only works under Windows, although work is underway to port to
Linux and Mac environments.
The material is presented in a set of roughly 90 minute sessions, and is meant to be
read while doing.

SESSION 1. KITCHEN TOOLS
Always start out with a larger pot than what you think you need.
The main tool in our well-stocked kitchen is G7, which in the words of Julia Child
above, is a “large pot”. G7 is a program designed for building models; estimating
regressions; developing databanks of scalar, vector and matrix variables; and
comparing scenarios and/or counterfactual historical simulations using plots and
tables. G7 is available for free from the Inforum website, and is under continuous
development.2 Its current features owe their presence to the many ideas, wishes and
work of current and past Inforum staff, international partners, students and other
users.
The use of G7 for developing macro models is described in The Craft of Economic
Modeling, Part I, which is used in a course for teaching macro modeling at the
University of Maryland. Part II describes a fully operational model known as
QUEST. Part III describes the use of G7 and Interdyme to develop Interindustry

1 All quotes below chapter or section headings are taken from Julia Child, who had many nuggets of
wisdom for both the cook and the model builder. Google “Julia Child quotes”.
2 http://www.inforum.umd.edu/software/g7.html . Extensive documentation is also available there,
which is viewable as either html, pdf or windows help files.

http://www.inforum.umd.edu/software/g7.html

 IWC 2018

 2

macro and other multisectoral models.3 However, you have what you need right in
front of you. Let’s get started!

1.1 Getting Started and Viewing Data
Insert the datastick into your computer. We will assume that it shows up on your
computer as K:. Find the datastick in Windows Explorer and double-click on the
Launch program (Rocket icon) at the top level. You are now in the ‘Command
Prompt’ application of Windows. The Launch program has now set up a convenient
environment for these sessions.
Figure 1.1. Initial Launch Window

Now, type ‘1’, and then the [Enter] key on your computer, and you’ll be taken to the
\Session1 folder. This folder has an IO databank and working forecasting program
for the Tux (Tiny Understandable eXtensible) model of the U.S. This version has 9
sectors. Another version on the datastick, which you may explore later, has 17
sectors4. These data were aggregated from the Inforum U.S. IO model named Lift.
Figure 1.2. Session 1 Folder

As instructed, type ‘g7’ and then hit the [Enter] key. You have just started G7 for the
first time!
Figure 1.3 shows the main components of the G7 application when it first starts.
Many of the features of the program are controlled by menu choices or buttons. The
full set of G7 commands can be given in the Command box, or input through a
command file, as we will show below. The results window shows the results of
running commands. Previous commands in the Command box can be retrieved and

3 All three parts are available at http://www.inforum.umd.edu/papers/TheCraft.html or on the datastick
as \Docs\CraftAll2.pdf
4 The 17-sector versions are in folders with an ‘A’ suffix. For example, Session1A is essentially the
same as Session1, but with 17 sectors instead of 9. The datastick also includes 47 sector versions, with
have a ‘B’ suffix.

http://www.inforum.umd.edu/papers/TheCraft.html

 IWC 2018

 3

reused by clicking the down arrow to the right of the command line, or simply
hitting the up or down arrows on the keyboard.
Figure 1.3. G7 Main Window

G7 commands are typed into the command box. When you have finished typing, hit
the [Enter] key. Let’s try a useful command, which allows us to look at a dictionary
of the database. In the command box, type

look a

and hit [Enter]. A window with a white background will appear to the right of the
main window, as shown in Figure 1.4. This is called the “look window”. If you
double-click on any line in that window, a graph of that variable will appear. If you
don’t have the layout shown in Figure 1.4, it is best to move and resize your look and
graph windows so that you do. These positions will be remembered, and help
prevent windows from becoming hidden.
Try clicking on gdp, vf, x, m, and whatever other variables you would like to view.
The first section of the look window shows macroeconomic variables such as these.
These are scalar variables (not vectors or matrices). The Tux model databank also
has several vectors and matrices. Some of these are shown in the second part of the
look window. For example, if you double-click on the line for outz1, you will see
nominal commodity output for Agriculture, forestry & fisheries, which is sector 1 in
the Tux model 9-sector aggregation5.

5 Note that in this database, macrovariables from the national accounts are in billions of dollars. Data
from the input-output accounts are in millions of dollars.

Menu bar

Button bar

Command box

Results window

 IWC 2018

 4

Figure 1.4. G7 Look Window with Graph

Close the look window and graph window now by clicking the ‘X’ in the top right
hand corner of each.
Another way to view matrix and vector data is with the “(s)how” command6. To
show the vector of exports over time, type:

show exz

Figure 1.5. Viewing a Vector Using the “show” Command

There are three alternative ways to show a matrix. To show the entire matrix for
one year, use the ‘y’ option:

s amfz y 2010 # Show the nominal interindustry flows matrix

6 The letter(s) inside the parentheses is the abbreviated version of the command.

 IWC 2018

 5

Figure 1.6. Viewing a Matrix Using the “show” Command

To show a column of the matrix over time, use the ‘c’ option.

s amfz c 3 # Show column 3

To show a row of the matrix over time, use the ‘r’ option.
s amfz r 5 # Show row 5

There are two other commands that are commonly used to view data, the “(ty)pe”
command and the “(gr)aph” command. To type the values of gdp, use:

ty gdp

To graph the values of imports of sector 5, use:
gr imz5

Although most commands can be given by using the command box, it is more
common to type a sequence of commands into a file, called an add file. G7 has its
own dedicated editor that can be used to execute an entire file, or portions of it.
The command to edit a file is simply “(e)dit”. Type the following in the command
box:

e gdp.sh

and a blank editor window will appear to the right of the main window.
Figure 1.7. Using the G7 Editor

Type the following text into the editor window:

 IWC 2018

 6

gdp.sh – A “show” file
gdp.sh - Graph GDP and some of its components. Type some
variables

gdates 2005 2016
ti Gross domestic product
gr gdp
ti Personal consumption expenditures
gr c
ti Gross private fixed investment
gr vfix
ti Exports
gr x
ti Imports
gr m

Type personal income and disposable income
tdates 2000 2016
ty pi
ty pidis

Click the “Save” command in the editor menu to save the file. To execute the file,
click the “Run” command in the editor menu. As each graph displays, the add file
will pause, and show the following window:
Figure 1.8. Continue Add File Window

You can always click the “Stop” button, or type the [Esc] key to stop the add file.
Click “Cont.” to continue. The “Max” button will make the graph full screen.
“Normal” brings it back to the size it was. “Save” allow you to save it to a picture file
which can later be imported into other software, such as Word or Powerpoint. If a
printer is available, “Print” will make a printout of the graph. “Shift1” and “Shift2”
leave the current graph on the screen, but in a smaller format, so that it can be
compared with the next graph that appears. The “Zip” command instructs G7 not to
print any graphs. If you click this by mistake, you can bring graphing back by giving
the command:

zip off

Keep on clicking “Cont.” to view the graphs you have set up in the add file. Hitting
the space bar or the [Enter] key will repeat the last choice you made.
In this gdp.sh file, there are some new commands: Anything following a ‘#’ on a line
is treated as a comment, and not processed by G7. It is always a good idea to start
an add file with a comment that includes the file name and an explanation of what
the file does. The “(ti)tle” command provides a title for the graph. There is also a
“(subti)tle” command for giving subtitles, and the “(vaxti)tle” command for a vertical
axis title. The “gdates” command specifies the dates for graphing. The “tdates”
command gives the dates for the “(t)ype”command. These dates can also be specified

 IWC 2018

 7

along with a “graph” or “type” command, in which case they remain in effect for
subsequent commands.
Another way to run the gdp.sh file is to use the “add” command. The format is shown
below:

add gdp.sh

The name for a file of commands for G7 is an add file. This is similar to the idea of a
do file in Stata. Note that add files can use the “add” command to call other add
files. The add command can also take arguments, or be run in a loop.

1.2 Calculations in G7
The most commonly used command for calculating variables in G7 is the “f”
command. The following statements calculate unemployment (unemp) and the
unemployment rate (un), given total household employment (emp) and the labor
force (lfc).

f unemp = lfc – emp
f un = unemp/lfc * 100

The following command calculates the personal savings rate:
f savrat = pisav/pidis * 100

Elements of a vector can be summed using the @csum() function. All functions in G7
start with the ‘@’ symbol. The following command sums all elements of nominal final
demand in millions and then converts to billions. We then check this against the
national accounts GDP:

f gdpchk = @csum(fdz,1-9)/1000 # millions to billions
ti Compare Total Final Demand and GDP
gr gdpchk gdp 1997 2016

The expression “1-9” is an example of a group, a concept that comes up repeatedly in
G7 and Interdyme. The above group indicates all 9 sectors from 1 to 9 inclusive.
Another example is “1,3,5,7,9”, which would be all odd sectors, or “1-4,6-9”, meaning
all sectors except for 5. Another way to write that group is “1-9(5)”, as element in
parenthesis are excluded or removed from the group. In the U.S. data, the following
identities hold:

gdp = @csum(fdz,1-9)/1000
c = @csum(pceioz,1-9)/1000
vfix = @csum(gpfiz,1-9)/1000
vi = @csum(venz,1-9)/1000
g = @csum(govz,1-9)/1000

The NIPA measures of exports and imports are not the sum of the corresponding IO
vectors. However, the two measures of net exports are equal:

netex = x – m
netex = @csum(exz,1-9)/1000 - @csum(imz,1-9)/1000

The logarithmic function is @log(), and the exponential function is @exp(). The
following commands calculate the growth rate of nominal gdp and graph it.

 IWC 2018

 8

f lgdp = @log(gdp)
f g_gdp = (lgdp – lgdp[1])*100.
ti Growth Rate of Nominal GDP
gr g_gdp 1998 2016

Figure 1.9. Growth Rate of Nominal GDP

1.3 Databanks in G7
One of the powerful features of G7 is its ability to access several databanks in a
flexible and convenient way. There are two main types of databanks. The first is
called simply a “G bank”. It consists of two files, one with the extension “.bnk”,
which holds the data, and the other with the extension “.ind”, which is a list of series
names and their locations in the bank. The historical bank for the Tux model
contains data for the macrovariables in the model. This bank is named hist.bnk. The
command for “assigning” a bank, which makes the data available to G7 is “(b)ank”.
An example of this command is:

bank hist

(Notice that the .bnk extension should not be given.) Each bank can also be assigned
a letter, which can be used to access series in that bank. For example, there is
another bank in the directory called macro.bnk. Let’s assign that bank to position ‘b’,
using the “(ba)nk” command:

bank macro b

The command “listbanks” or “lb” is used to get a list of the currently assigned banks,
and to show their positions, or bank letters. If you type

lb

You’ll now see the following output:
There currently are 2 assigned banks.
Bank a: hist.bnk Type: bnk
Bank b: macro.bnk Type: bnk

Another bank is always present, called the “workspace bank”. By default, its name is
ws.bnk. It is always assigned at position ‘w’. Therefore there are 25 possible
positions for an assigned bank: the letters ‘a’ through ‘z’, excluding ‘w’. The

Growth Rate of Nominal GDPGrowth Rate of Nominal GDP
 6.46

 2.20

-2.06

2000 2005 2010 2015
 g_gdp

 IWC 2018

 9

workspace bank is the destination of any new series that are created, for example
using the “f” command.
To see the list of the series in a databank, use the “(lis)tnames” command. To see the
list of series currently in the workspace bank, use:

lis w

The other type of bank is called a “Vam file” and is used to store vectors and
matrices. The structure of a Vam file is fixed, and determined by a configuration file
named vam.cfg. Here is an extract from the vam.cfg file for the first version of the
Tux model:

vam.cfg
vam.cfg for the Tux9 model, a very simple model based on an aggregated
9-sector IO framework. This is for model 1, with only nominal variables.
Years of the vam file.
1997 2030
Name |Number of |Files of titles of| Description
|row col lag| rows cols |
amfz 9 9 0 sec9.ttl sec9.ttl # Input-output flow matrix
amz 9 9 0 sec9.ttl sec9.ttl # Input-output coefficient matrix
linv 9 9 0 sec9.ttl sec9.ttl # Leontief inverse
Nominal vectors
outz 9 1 3 sec9.ttl # Output
pceioz 9 1 0 sec9.ttl # Personal consumption expenditure
gpfiz 9 1 0 sec9.ttl # Gross Private Fixed Investment
venz 9 1 0 sec9.ttl # Inventory change
govz 9 1 0 sec9.ttl # Government spending
exz 9 1 0 sec9.ttl # Exports
imz 9 1 0 sec9.ttl # Imports
fdz 9 1 0 sec9.ttl # Total final demand
ddz 9 1 0 sec9.ttl # Domestic demand = outz+imz-exz
impshrz 9 1 0 sec9.ttl # Imports share = imz/ddz
interz 9 1 0 sec9.ttl # Total row intermediate, cur$
intcolz 9 1 0 sec9.ttl # Total column intermediate, cur$

All text after a ‘#’ on a line are comments. The first line which is not a comment
indicates that this Vam file will contain data from 1997 to 2030. The rest of the file
(that is not comments) has one line for each matrix or vector. The format of these
lines is described briefly in the comment lines 5-6. For example, the intermediate
flow matrix is called amfz. The line describing its structure is:
amfz 9 9 0 sec9.ttl sec9.ttl # Input-output flow matrix

The fact that it is a matrix is indicated by both row and column dimensions being
greater than 1. It has 9 rows and 9 columns. The fourth entry, which is zero, we’ll
skip for now. The next two items are filenames, indicating the “titles files” for the
rows and columns. The rest of the line is a comment. For the vector outz the line is
as follows:
outz 9 1 3 sec9.ttl # Output

 IWC 2018

 10

To assign a Vam file, use the “(v)am” command. The historical data for vectors and
matrices in the Tux model is named “hist.vam”. To assign this bank to position ‘d’,
use the command:

vam hist d

You could then type the values of exports for sector 1 using the command:
ty d.exz1

You could use the “show” command to show values of labor compensation with:
s d.lab

1.4 The Tux Model Database
The Tux model of the U.S. is a small 9-sector model, but based on a much larger
database of a U.S. model called Lift, which has 121 commodities and 71 industries.
We have used G7’s aggregation tools to create this teaching databank, but the skills
you learn in this course can be applied to much larger models.
Table 1.1 shows a list of the sectors in Tux, and their correspondence with the North
American Industry Classification System (NAICS).
Table 1.1 – Tux Sectoring Classification

The first version of Tux we present in this session has data in current prices only.
Our naming convention is for matrix and vector variables that may be present either
in current or constant prices, for the current price versions to end in a ‘z’. The
database has the IO table, final demands, output, value added, and employment
variables. The list of matrix and vector variables is shown in Table 1.2. Total final
demand, the vector fdz is defined by:
fdz = pceioz + gpfiz + venz + govz + exz – imz
The row sum of the intermediate matrix amfz is interz. Nominal output satisfies the
identity:
outz = interz + fdz
Total value added va is defined by:

NAICS Description
1 11 Agriculture, forestry, fishing and hunting
2 21 Mining and extraction
3 22 Utilities
4 23 Construction
5 31-33 Manufacturing
6 42,44-45 Trade
7 48-49 Transportation

8
51,52-56,61-
62,71-72,81 Services

9 92 Government

 IWC 2018

 11

va = lab + gos + topi
The column sum of the intermediate matrix is intcolz. Nominal output also satisfies
the identity7:
outz = intcolz + va
Table 1.2 – Matrices and Vectors in Tux, Version 1

Domestic demand ddz, which is used to calculate imports in the model, is defined as:
ddz = outz + imz – exz
The import share, or share of imports of domestic demand, is defined simply as:
impshrz = imz/ddz
The direct coefficients matrix is amz. The Leontief inverse8, defined as (𝐼𝐼 − 𝑎𝑎𝑎𝑎𝑎𝑎)−1 is
in the matrix named linv. Employment by sector, in thousands of persons, is in the
vector empv. Hours worked, in millions, is in the vector hrsv. Productivity, defined
as outz/hrsv is in the vector prdv. (Technically, productivity should be calculated
using real output, but we will overlook that for now.)
Using the G7 “(s)how”, “(ty)pe” or “(gr)aph”commands you learned in the previous
section, feel free to examine any of the vectors or matrices in Tux.
In addition to matrices and vectors, a typical Interdyme model also has
macrovariables. These are scalar variables, such as an interest rate, aggregate GDP,

7 There is no distinction between industry and commodity in this Tux model. All IO data are
commodity based.
8 The Leontief Inverse will be tasted more fully in Session 3.

Name Description
A-Matrix

amfz A-matrix in flows, Current dollars
amz A-matrix coefficients
linv Leontief inverse

Output, Final Demands and Related Vectors
outz Output
pceioz Personal consumption expenditure
govz Government spending
gpfiz Gross Private Fixed Investment
venz Inventory change
exz Exports
imz Imports
fdz Total final demand
ddz Domestic demand = outz+imz-exz
impshrz Imports share = imz/ddz
interz Total row intermediate, cur$
intcolz Total column intermediate, cur$

Value Added
lab Labor compensation
gos Gross operating surplus
topi Taxes on production and imports
va Value added

Employment
empv Employment
hrsv Hours worked
prdv Productivity

 IWC 2018

 12

or the government deficit. Table 1.3 shows a list of the variables available in the Tux
historical databank. Not all of them are currently forecast in the model. However,
any of them can be displayed for the historical period, using the “look” command, or
the “(t)ype” or “(g)raph” commands. Note that the variables gdp to topinc are sums
of the corresponding vectors, although they are in billions of dollars, whereas the
vectors are in millions.
Table 1.3 – Macrovariables in Tux, Version 1

Name Description
GDP and its Components

gdp Gross domestic product
c Personal consumption expenditures
vfix Gross private fixed investment
vi Inventory investment
g Government consumption and investment
x Exports
m Imports

GDP by Income Components
labinc Labor compensation
capinc Gross operating surplus
topinc Taxes on production and imports, less subsidies

Personal Income and its Components
pi Personal income
labinc Labor compensation
pintdiv Personal interest and dividend income
piprop Proprietors' income
piren Rental income
pigsb Government social benefits
pibtp Business transfer payments to persons
picsi Less: Social insurance contributions

piptax Less: Personal taxes
pidis = Disposable income

Less:
pisav Personal savings
piipcb Personal interest payments
piptt Personal current transfer payments
c = Personal consumption expenditures

Population, Labor Force and Employment
pop Population
lfc Labor force
emp Household employment
empind Total industry employment
unemp Unemployment
un Unemployment rate

Financial
m2 M2 - Money supply
rtb 3-month Treasury bill rate
rtb10y 10-year Treasury bill rate
raaa AAA bond rate
rcmor Mortgage interest rate

 IWC 2018

 13

1.5 What Is The Tux Model?
Tux is an Interdyme model. This means that it is written in C++, and the code is
compiled to make an executable program, named dyme.exe. The program works with
two simulation files as it runs. One is a Vam File (with extension .vam), which holds
the vectors and matrices. The other is called a G Bank (with extension .bnk) and
holds the macrovariables. We will be running a base case in the next section. When
it is done, we will have two files BASE.VAM and BASE.BNK that hold the
simulation results.
Table 1.4 – General Sequence of the Model

Table 1.4 shows the general sequence of the model solution. First there is an
initialization phase, where vectors, matrices and macrovariables are declared and
initialized. The main part of the model is a loop through the years of the simulation.
In the model code, the current year is always represented by the variable t. Within
each year, vectors and matrices which have been declared are loaded from the Vam
file. Next a loop is set up for convergence. In Tux we check convergence on the
values of consumption and investment. Within this convergence loop, the first
section of the model calculates values for the final demand vectors. Next, total final
demand is given to the IO solution to calculate output. After this, the value added
vectors are calculated. Next comes a section that calculates macroeconomic
identities. The model checks for convergence. If it hasn’t converged, it goes back to
the top of the loop to calculate final demands again. If it has converged, it stores the
matrices and vectors for the current year, and then moves on to solving the next
year. When the annual loop has finished, the model writes out the macrovariables to
the G Bank and finishes.
In this first simple version of Tux, there are no individual equations for the final
demand and value added vectors. Rather, we specify the totals exogenously, and
share to the industries using share vectors. This type of model is called a top down
model.
Personal income (pi) is calculated within the macroeconomic identities. Disposable
income (pidis) is then formed by removing personal taxes (piptax). Finally, savings
(pisav) and a few other items are removed from disposable income to obtain total
consumption (c).

Declare and initialize vectors, matrices and macrovariables
Loop through the years of the simulation

Load vectors and matrices for the current year
Initialize convergence variables: consumption and investment

Forecast final demand vectors
Calculation of the IO Solution
Forecast value added vectors
Calculate macro identities

Check for convergence
Store vectors and matrices for the current year

Finish annual loop
Store macrovariables

 IWC 2018

 14

We will look at the computer code that implements these steps in Session 3.

1.6 Running the Tux Model
You don’t spring into good cooking naked. You have to have some training. You have
to learn how to eat.
Good model building presupposes understanding what you want from a model. What
problems should it solve? What questions should it answer? What good advice can be
learned from it? Although our current version of Tux is extremely simple, it helps to
run it and look at the forecasts to understand something of the operation of the
model. In this section we’ll make a base run of the model, and in the next section run
an alternative scenario. Both scenarios can be loaded at the same time in G7 and
variables from each scenario can be compared graphically.
The Tux model can be run from within G7. Choose the menu item Model | Run
Dyme Model, or simply hit the F8 function key. The dialog box, or “Interdyme Run
Form” shown in Figure 1.11 appears.
Figure 1.10

Figure 1.11

 IWC 2018

 15

Fill it out as shown in the figure. Here are the fields, and their meanings:
Field Name Meaning File Name

Title of run Descriptive title, which will appear in the databank
and in tables.

Start date Start of the simulation, usually the last year of data

End date The ending year of the simulation

Macro equation
start date

When the macro equations start working, usually
the last year of data.

Discrepancy year Year for calculating IO discrepancy, also usually the
last year of IO data

Result Name of forecast bank (.VAM, .BNK) BASE.VAM, BASE.BNK

Start Starting bank, usually HIST.VAM, HIST.BNK HIST.VAM, HIST.BNK

Exog Name for exogenous variables file BASE.XG

Macfixes Name for macro fixes file BASE.MFX

Vecfixes Name for vector fixes file BASE.VFX

The last two items refer to “Fixes”. A fix is a way to specify values for exogenous
variables, or to modify calculated values of endogenous variables in the model.
Endogenous variables are variables “born within” the model. In other words, there
are regression equations or identities which calculate these variables. Exogenous
variables, on the other hand, are “born outside” the model, and must be made up or
projected by the person running the model.
For this first run, please fill out the fields as shown, and then click the OK button.
When the first message box appears, click OK. Then several operations will run in
the background. If you get to a blank screen, just hit the [Enter] key. You should
then see the model run in the G7 main window.
Figure 1.12 – First Model Run in G7

 IWC 2018

 16

Hit [Enter] one more time to return control to G7. (Please don’t forget!)
Now you have run the base scenario. A new vam file BASE.VAM and a new G bank,
BASE.BNK have been created, that include the same historical data as in
HIST.VAM and HIST.BNK, but also contain the forecasted values of the vectors,
matrices and macrovariables calculated by the model.
From G7, give the command

vam base

to load the just completed base scenario. (The “vam” command treats the
BASE.VAM and BASE.BNK as a single unit, so both are loaded.)
Now, we’ll create an “add file” in the G7 editor. From the G7 Command Box, enter
the following command:

ed base.sh

and you should see an empty editor window. Now, type the commands into the
base.sh file as shown in Figure 1.13.
Figure 1.13 Editing the base.sh File

Figure 1.14 Graph of Personal Income, Etc.

Personal Income, Disposable Income, and ConsumptionPersonal Income, Disposable Income, and Consumption
Base Scenario

18350

12571

 6792

2000 2005 2010 2015 2020 2025
 pi pidis c

 IWC 2018

 17

When you are finished, click the Save menu item to save the file. To run all the
commands in the file, you can click the Run menu, or hit the F9 function key.
Figure 1.14 shows one of the graphs from this base.sh file. The vertical line in the
graph shows the end of the historical data and the beginning of the forecast.

1.7 Making an Alternate Scenario
The base scenario we have set up is only one of many possible scenarios. Each
scenario can be thought of as a combination of:

1. The current version of the model, identities and equations.
2. The starting year, and the values of the data in that year.
3. Assumptions on endogenous or exogenous variables.

We’ll be making changes to the model in the next session. For these sessions, we will
always use 2016 as the last year of historical data, and as the starting year for
running scenarios. However, we will change an assumption, and then see how this
affects the model results.
There are three files, briefly mentioned above, that are used to specify assumptions
to the model:

1. BASE.XG – A file of G7 commands, that can be used to specify projected
values for exogenous variables

2. BASE.MFX – The file for typing in macro fixes.
3. BASE.VFX – The file for typing in vector and matrix fixes.

We will create a scenario that assumes that the U.S. has lower imports and lower
exports in the forecast, due to withdrawal from trade agreements and the imposition
of punitive tariffs. We will call the resulting scenario TRADEWAR.
First, we will copy the above three files to files with the root name TRADEWAR. If
you are more comfortable with the command prompt, here are the commands:
Figure 1.15 Copying in Command Prompt

If you are more comfortable with Windows Explorer, you can copy them there.
Simply hold down the ‘Ctrl’ key and click on base.mfx, base.vfx and base.xg. Then
right-click, and pick ‘Copy’. Right-click in any white area of Explorer, and pick
‘Paste’. To rename the copies, click twice on each name very slowly. This puts a box

 IWC 2018

 18

around the filename, where you can type in a new name. Name the copied files
tradewar.mfx, tradewar.vfx and tradewar.xg.
Figure 1.16 Copying in Explorer

Several text editors have been provided on the data stick, and placed in the \Util
folder, which is on the path. These are Notepad++ (np), WordPad (wp) and the FTE
editor (ed). They can each be accessed from the Command Prompt, with the short
name in parenthesis. Let’s start Notepad++ to open the TRADEWAR.MFX file that
we have just copied from BASE.MFX. Type the command:
np tradewar.mfx

You will see the following contents:
TRADEWAR.MFX
Interdyme Cookbook, 2018
Macfixes.mfx - Macrovariable fixes for the Tux model, version 1

rho vfix 0.6 2016
rho c 1 2016
rho imztot 1 2016
rho exztot 1 2016
rho g 1 2016
rho vi 1 2016
Fixed investment
gro vfix
 2017 2.1
 2030 2.1
Government
gro g
 2017 1.3
 2030 1.3
Imports
gro imztot
 2017 2.1
 2030 2.1
Exports
gro exztot
 2017 2.1
 2030 2.1

 IWC 2018

 19

Lines in the macro fixes file that begin with a ‘#’ are comments, and are ignored by
the program. Fixes in this file are indicated by the following commands9:
• rho – Specify a “rho” fix, which sets the last year of data, and a value for the rho

parameter, which may have come from a regression equation.
• gro – Specify a growth rate fix
• ovr – Specify actual values of a variable
• ind – Move a variable by an index
• mul – Multiply a variable by specified values
• cta – Add specified values to a variable
The format of a macrofix is:
<fixtype> <variablename>
 <year> <value> [<value> <value> <value> …]
 <year> <value> [<value> <value> <value> …]

For example, there is already a growth rate fix on total exports in the base case:
gro exztot
 2017 1.5
 2030 1.5

This specifies growth rates for two years only, and in this case, the growth rates are
the same. The Macfixer program will interpolate the growth rates for the missing
years, which means in this case that growth will be a constant 1.5 percent. The first
growth rate is specified for 2017, since 2016 is the last year of data. Let’s reduce the
growth rate of exports from 2.1 to 0.5, and reduce the growth of imports from 2.1 to
1.8, resulting in the following:
Imports
gro imztot
 2017 1.8
 2030 1.8
Exports
gro exztot
 2017 0.5
 2030 0.5

Now, save the file using File |Save, or Ctrl+S.
Start up G7 and we’ll run the TRADEWAR scenario. Again, choose the menu item
Model | Run Dyme Model, or press the F8 function key. Fill in the form as shown in
Figure 1.17 below.

9 There are several other types of fixes, but we’ll cover them later.

 IWC 2018

 20

Figure 1.17 Run Form for “Trade War”

Run the model as before. Don’t close down G7 quite yet. Let’s load the file base.sh
into the G7 editor again (“ed base.sh”):
Figure 1.18 Comp.sh, to Compare the Base and Tradewar Scenarios

The choose the editor menu File | Save as … and pick comp.sh as the new file
name. Then edit the file as shown in Figure 1.18 above.

 IWC 2018

 21

When you are finished, you can run this file in G7 by either clicking on the Run
menu, or hitting the F9 function key. If you would like to add other variable
comparisons to comp.sh, you can refer to tables 1.2 or 1.3 for vector, matrix or
macrovariable names.
In the next session, we’ll explore the macroeconomic identities, and make a few
changes to the macroeconomic part of the model.

1.8 Where to Find More Information
The “G7 Cheat Sheet” at the back of this session summarizes some of the most
commonly-used G7 commands.
From the Command Prompt on the datastick (the “launch” window), type “help” to
bring up page shown in Figure 1.19. Click on “The Interdyme Cookbook” to read
this document in PDF. “Cooking With Interdyme” is a more general description of
what Interdyme modeling is about. “Overview of Interdyme” is slightly more
technical. “Exploring G7” provides a quick tutorial of using G7 with one of the U.S.
databases that can be downloaded from the Inforum web page. “INFORUM Help” is
a large document that contains practically complete documentation on G7, Compare
and related tools. The “Interdyme Manual” is somewhat outdated, but still contains
a good description of building a model with Interdyme. Finally, there are various
volumes of The Craft of Economic Modeling, by Clopper Almon. Volume 1 is an
introduction to modeling, and building macroeconomic models using G7 and Build.
Volume 2 contains more advanced material on macroeconomic modeling. Finally,
Volume 3 is about interindustry macroeconomic modeling, which is also the subject
of these sessions.
Figure 1.19 Help Page for the Interdyme Cookbook

 IWC 2018

 22

All of these materials can be found under the \Docs folder of the datastick. Inforum
Help Documentation is in Help.pdf, and is the same as the online help in G7. The
full 3 volumes of the Craft of Economic Modeling is in CraftAll2.pdf.
Many of the most important files that need to be edited in these sessions can be
accessed through the PSPAD editor which is supplied on the data stick. If you move
to the root directory of the data stick by typing:

cd \

and then type
edit

a PSPAD window will open. It has a tree on the left that contains the most
important files in the various sessions. In this way, these files can be accessed
immediately. The organization also provides an alternative guide to the sequence of
the sessions. A screen shot is shown in figure 1.20.
Figure 1.20 PSPAD Editor Window

 IWC 2018

 23

G7 Cheat Sheet
Command Description Example

(ba)nk The command will make the standard workspace data bank the
assigned bank. If specified with a letter location after, then the bank
will be placed in that position, otherwise it is automatically placed in
position “a”. The syntax is as follows

ba <bank_name>[bank_location]

Without location
ba gdp

With Location
ba gdp c

To print or type with location
ty c.price

(v)am Makes the specified vam file the assigned bank. The syntax is as
follows

vam<bank_name>[bank_ location]

Without location

vam gdp

With Location

vam gdp c

fdates Sets or resets the dates used by subsequent f commands. When an
fdate command is used, it defines the time period in which the
subsequent f commands act

fdates 1990 2016

gdates Sets the dates used by the graph or plot command. With 2 dates
provided, the series will be graphed from the first date to the second
date. With 3 dates, a vertical line is drawn at the 2nd date.

gdates 2000 2016 2025

tdates Selects “automatic dates” for graph and type commands. The
automatic dates are the first and last date of the series actually
provided

tdates 2000 2016

(t)ype The command to display values for any series for the specified dates.
The syntax for the command is:

ty <series name>[start date][end date]

If no dates are assigned, the tdate will automatically be used

ty gdp 2005 2016

(g)raph The command to graph any series. The graph command can graph 1
to 6 series from one date to another. The syntax for the command is:

gr <series name>[start date][end date]

If no dates are assigned, the gdates will automatically be used

For one variable

gr gdp 2005 2016

For multiple variables

gr gdp gnp 2005 2016

(ti)tle Provides a title for regressions and graphs ti Consumption vs GDP

(subti)tle Provides a subtitle for graphs subti Consumption vs GDP

(vaxti)tle Provides the vertical axis title vaxti money

(e)dit The command to edit a new or existing file in the editor window ed makevam.add

look Brings up the stub file in a scrolling list box, from which you
can select various series in the bank that you want to print
out and graph.

look a

 IWC 2018

 24

(s)how The show command shows vectors and matrices in a grid
similar to a spreadsheet.
For Vectors:
sh <bank letter>.<vector_name><first row><first period>
For matrices:
sh <bank letter>.<matrix_name><view><first row><first
period>

For vectors
sh a.vector

For Matrix Row View
show b.am r 5
For Matrix Column View
show b.am c 7
For Matrix Year View
show b.matrix y 1997

(a)dd Execute commands from the named file. The syntax is :
add <filename>

add makevam.add

data Introduces data into the work space. The first number on each
line is the date of the first observation on the line. End data
with a ;
The Syntax is :

data<name>
<date> <observation1><observation N>

data sales
2010 117 123 134 142
2014 137 143 145;

f Defines the variable on the left in terms of the variable on the
right. It is typically used in order to do calculations. The
syntax for the command is:

f<variable> = <expression>

f gdpP = gdp/gdpR

(lim)its Sets limit dates for regressions.
lim<start_date><end_date>[forecast_date}

lim 2000 2016

r Runs regression
r<y> = <x>,<x2>,<x2>

r investment =
cap,energy,services

gr* Graphs the predicted values of the regression gr *
(lis)tnames Lists all the series in a given bank lis a
listbanks
(lb)

Lists the currently assigned databanks, their type, position
letter, and title (if any).

Comment character
zip
<on|off>

The “zip” command prevents printing of graphs and allows an
add file to run with no pauses. Use “zip off” to turn off.

(q)uit Terminates G7. You can also use File | Exit; Alt+F4, or click
the red X box in the upper right-hand corner.

 IWC 2018

 25

A C++ program is built from functions and objects. There are 4 basic data types in C++: int (integer),
float (real number), char (single character) and bool (true or false). For the most part, C++ is free-
format; anywhere that a blank may appear, any number of blanks or a new line may appear. A
statement is a single or combined operation terminated with a semicolon (‘;’). Every variable used in a
C++ function must have been previously declared in that function or declared globally. Every C++
program is a combination of functions, one of which is named main(). With the exception of main(),
functions must be declared before they are used. For library or system functions, this will usually be
done by an #include statement. Our first example below will illustrate some of these ideas.
apple.cpp
#include <stdio.h>
int main(void) {
 int apples;
 apples=2;
 float pie=3.1415926, product;
 product = apples*pie;
 printf(“ 2 pi is about %8.5f.\n”, product);
}
The main() function returns an int, and this version takes no arguments, which is indicated by the
word void inside the parentheses. The first variable declared is an integer named ‘apples’, and it is set
to 2 in the following statement. The second is a real number (float) named ‘pie’, and it is initialized to
a value in the same statement where it is declared. The third variable is a float named ‘product’. In
the next statement, product is set to the product of apples and pie.
The most difficult statement in the program is the call to the printf() library function. The program
knows about printf() because it is declared in the system include file stdio.h. The printf() function
prints one or more lines of output to the screen. The function takes a formatting string, and zero or
more arguments. The formatting string may be just text, or it may include format specifiers which
tell it that the value of a variable is to be printed. The format specifiers all start with the ‘%’
character. The ‘%8.5f’ specifier is for a float (‘f’), which will occupy 8 columns, with 5 digits after the
decimal point. The variable that will be printed is product, which is the other argument to printf().
A program starts with one or more .cpp (text) files. These are compiled to object (binary) files, with
the extension .obj. One or more object files may be linked into an executable file, with extension .exe.
There is a folder named \CPP on your datastick. You can get there by typing ‘c’ at the command
prompt. You can edit the apple.cpp program in Notepad++ by typing ‘np apple.cpp’.
You can compile and link the apple program with ‘bc apple’.
Run the program by simply typing ‘apple’. Here is the output of the program:
J:\CPP>apple
 2 pi is about 6.28319.

C++ Interlude 1: Basics

 IWC 2018

 26

SESSION 2. MACRO EQUATIONS, MAKING TABLES
Nothing is too much trouble if it turns out the way it should.

The first session introduced you to G7 and some of its capabilities, including using
the “look” command to navigate a databank, typing and graphing data, viewing
matrix and vector data with the “show” command, creating new series with the “f”
command and how to handle multiple databanks. The Tux model also made its
appearance. Tux is a basic IO model with 9 sectors, and simple macro accounts. We
covered the structure of the model, how to run it, and then how to make alternative
assumptions to create a scenario.
In this session, we’ll get out our knives and measuring spoons, and learn some of the
basics of preparing an interindustry macroeconomic (IM) model, of which Tux is an
example.
If you have G7 running, please close it (click on the red ‘X’ in the top right corner,
choose the menu item File | Exit, press the key combination Alt+F4, or type the
command “q” in the command box). Go back to the ‘Cooking With Interdyme’
window you had opened earlier, using the Launch program. If you have closed that,
you need only navigate back to K: in Explorer, and then double-click on Launch (the
rocket icon). Type ‘2’ to move to Session 2.
Figure 2.1 Session 2 Folder

The session 2 folder is still working with Tux, version 1. The model databanks and
base scenario have been copied to \Session2. Looking ahead, session 3 will include
an expanded model (Tux 2) that will include constant price variables and prices.
Session 4 will include Tux 3 which includes equations for productivity, hours,
employment and wages, as well as detail on government receipts and expenditures.

2.1 Macroeconomic Equations and Identities
A macrovariable is a single variable that is neither a matrix or a vector.
Macrovariables may be formed as aggregates of parts or entire vectors or matrices,
as functions of other macrovariables (identities), or as the left hand side of a
regression equation. Figure 2.2 summarizes the model building process with
macrovariables.
Macrovariables are kept in a G Bank, with file extension .bnk. Vectors and matrices
are kept in a vam file with extension .vam. In Interdyme we have followed the
practice of naming the historical files hist.bnk and hist.vam. In these sessions,

 IWC 2018

 27

hist.vam has already been created for you. However, you’ll have the opportunity to
build and change hist.bnk using a program called IdBuild.

Figure 2.2 The Sequence for Modeling with Macrovariables

Although IdBuild is the powerful food processor which spins out C++ code and
builds the hist.bnk file, most of the initial ingredients are prepared using G7.
The process starts with a “.reg” file, or regression file, which contains regressions,
identities and other statements. These files are conventionally named with the
extension “.reg”, to indicate their purpose. They are processed in G7 using the “add”
command, as we’ll see shortly. Part of the .reg file is sandwiched between “save”
statements, and from this part a “.sav” file is created. One or more .sav files are then
processed by a program called IdBuild to create function in C++ code, which can be
compiled and linked into a working model. We will look at the identities for
calculating personal income in the Tux model, to see how this all works. But first, we
need a little background on the U.S. national accounting system.

2.2 Background on Personal Income
Unlike most countries in the world, which follow the System of National Accounts
(SNA), the U.S. has the National Income and Product Accounts (NIPA). In the U.S.,
the measure of income that provides an estimate of income from all sources, less
social insurance contributions, is called Personal income.10 In the Tux model, that
variable’s name is pi. Table 2.1 shows the components of Personal income, and their
values for recent years.
The largest component of personal income is Compensation of employees, which
consists of wages plus benefits of workers. The next largest is Government social
benefits, which consists of Social Security, Medicare, Medicaid and other
government transfer payments. Dividend and interest income is also large, and
represents income from personal investments. Proprietors’ income is income from
businesses which are not incorporated. Other components are Rental income and
Business transfer payments to persons. After adding up these components,
Contributions for social insurance are removed to arrive at Personal income.

10 Note that titles of NIPA variables usually have the first word capitalized.

Regressions
and

identities
.reg Input to

IdBuild.sav
C++

Model
Code

.cpp

 IWC 2018

 28

Table 2.1 Personal Income and its Components

Personal taxes are removed from Personal income to obtain Personal disposable
income (pidis). Savings (pisav) and two other variables are then removed from pidis
to obtain Personal consumption (c).

2.3 Regression Files in G7
Regression (.reg) files are designed to be run in G7 using the “add” command. We’ll
be working with pi.reg, which is shown below:
pi.reg
pi.reg - Personal income calculations
ba macro # Source data bank
--
Define or copy some variables before turning on the save file
Labor income
f labinc = nice
Taxes on production and imports
f topinc = nitpils
Capital income
f capinc = gdp - labinc - topinc

national income variables
f pi = pi
Interest and dividend income
f piint = piint
f pidiv = pidiv
f pintdiv = piint+pidiv
Proprietors' income
f piprop = piprop
Rental income
f piren = piren
Government social benefits
f pigsb = pigsb
Business transfer payments to persons
f pibtp = pibtp
Contributions for social insurance
f picsi = picsi

f pichk = labinc + pintdiv + piprop + piren + pigsb + pibtp - picsi
ti Personal income: Check identity
subti Billions of $
gr pi pichk 2000 2016
--

save pi.sav

Title Variable 2010 2012 2013 2014 2015 2016
 Personal income pi 12,477 13,915 14,074 14,818 15,553 15,929
 Compensation of employees labinc 7,961 8,610 8,842 9,256 9,708 9,979
 Proprietors' income piprop 1,033 1,241 1,285 1,316 1,319 1,342
 Rental income piren 403 525 567 612 662 707
 Dividend and interest income pintdiv 1,740 2,124 2,056 2,245 2,387 2,378
 Government social benefits pigsb 2,282 2,324 2,387 2,499 2,631 2,711
 Business transfer payments to persons pibtp 43 43 41 46 53 57
 Less: Contributions for social insurance picsi 984 952 1,105 1,155 1,208 1,245
 Personal income check 12,477 13,915 14,074 14,818 15,553 15,929

 IWC 2018

 29

Personal income calculation in Tux
Personal interest and dividends
fex pintdivrat = pintdiv/capinc
f pintdiv = pintdivrat*capinc
Proprietors' income
fex piproprat = piprop/capinc
f piprop = piproprat* capinc
Rental income
fex pirenrat = piren/capinc
f piren = pirenrat* capinc
Business transfer payments
fex pibtprat = pibtp/capinc
f pibtp = pibtprat*capinc
Government social benefits
fex pigsbrat = pigsb/g
f pigsb = pigsbrat*g
Contributions to social insurance
fex picsirat = picsi/pi[1]
f picsi = picsirat*pi[1]

Personal income
id pi = labinc + pintdiv + piprop + piren + pigsb + pibtp - picsi
save off

From the command prompt in k:\session2, start up G7 again by typing ‘G7’ and then
hitting the [Enter] key.
Open up pi.reg in the G7 editor, by typing the command

ed pi.reg

in the white command box. Once you have it loaded, go ahead and run it by either
clicking the ‘Run’ menu, or pressing the F9 function key. In the middle of the
process, it will show a graph of pi and pichk, just to make sure that this identity is
correct (it is). The file executes quickly, and the file pi.sav has been created, which
is the main reason for running pi.reg.
The pi.reg file has two parts. The first part, up to the line “save pi.sav” brings
variables into the workspace bank from the source bank, which is macro.bnk. (This
macro.bnk was prepared also using G7, from source data.) Any line beginning with
the ‘#’ character is a comment. Portions of lines preceded by ‘#’ are also comments.
The first command

ba macro

assigns the macro bank as
the default source for data.
The statement
f labinc = nice

forms the new variable
labinc (labor income, or
Compensation of employees)
in the workspace by copying
the variable nice from the
source bank. After creating

If you’re curious about the contents of macro.bnk,
simply type

look a

in the G7 command box. Then you can scroll
through the variable list, double-clicking on any
variables you’d like to examine. The macro.bnk
has nearly 800 variables, from which the
macrovariables in Tux are drawn.

 IWC 2018

 30

several variables in the workspace bank, a check value for personal income is
calculated:
f pichk = labinc + pintdiv + piprop + piren + pigsb + pibtp – picsi

(These correspond to the variables shown in table 2.1.) A graph is then created to
compare this check value with the actual value of pi.
The second part of the file starts with “save pi.sav”. This command opens up a new
file pi.sav for writing, and writes several types of statements into it. These are
usually either “f”, “fex”, “id” or “r” statements. Table 2.2 summarizes the function of
each of these commands.

Table 2.2 Save File Commands for IdBuild

The pi.reg file has examples of “f”, “fex” and “id”. The command “save off” closes and
completes the writing of the file pi.sav. Before discussing the differences between
these commands, let’s continue to trace through the macrovariable modeling
procedure.

2.4 The Save File
The save file (conventionally ending with “.sav”) contains commands which will be
passed to the IdBuild program, which will then write out a C++ program file named
heart.cpp. While you have G7 open, look at the pi.sav file you just generated with

ed pi.sav

The pi.sav file is shown below:
pi.sav
fex pintdivrat = pintdiv/capinc
f pintdiv = pintdivrat*capinc
fex piproprat = piprop/capinc
f piprop = piproprat* capinc
fex pirenrat = piren/capinc
f piren = pirenrat* capinc
fex pibtprat = pibtp/capinc
f pibtp = pibtprat*capinc
fex pigsbrat = pigsb/g
f pigsb = pigsbrat*g
fex picsirat = picsi/pi[1]
f picsi = picsirat*pi[1]
id pi = labinc + pintdiv + piprop + piren + pigsb + pibtp – picsi

Comments in the .reg file do not get passed through to the pi.sav file. The “f”, “fex”
and “id” lines are passed through verbatim.

Command Function
In the model

code?
In the

hist.bnk?
f Forms a variable as a function of other macrovariables and vector variables Yes Yes
fex Same No Yes
id Same Yes No
r Performs a regression estimation, and writes out code to go into the model Yes Yes

 IWC 2018

 31

2.5 The IdBuild Program
The IdBuild program processes commands, usually in an input file, and writes out
C++ code, into a file named heart.cpp by default. We conventionally name the input
file master, but it can have any name. The master file for the Tux model is shown
below:
master
Master File for Tux9: Model 1
iadd pseudo.sav
iadd pi.sav
iadd account.sav
iadd vfix.sav
ba exim
iadd exim.sav
iadd Fixes.sav
end

This version of the master file uses 6 save files.
As in many files, lines beginning with ‘#’ are a comment. Except for with the
pseudo.sav file, the “iadd” (Interdyme add) command tells IdBuild to process
that .sav file and write a function into heart.cpp that has the same name as the first
part of the filename, but with an “f” on the end. For example, the function for pi.sav
will be named pif().
Here is the code for the pif() function, as written to heart.cpp by Idbuild:
pif() Function
void pif()
{
 pintdiv[t]= pintdivrat[t]* capinc[t];
 piprop[t]= piproprat[t]* capinc[t];
 piren[t]= pirenrat[t]* capinc[t];
 pibtp[t]= pibtprat[t]* capinc[t];
 pigsb[t]= pigsbrat[t]* g[t];
 picsi[t]= picsirat[t]* pi[t-1];
 pi[t]= labinc[t]+ pintdiv[t]+ piprop[t]+
 piren[t]+ pigsb[t]+ pibtp[t]- picsi[t];
}

This is C++ code. Even if you have experience with programming C++, it won’t hurt
to review, as well as to describe a few special features of Interdyme C++ code. The
first line “void pif()” indicates that this is a C++ function, which can be called by
the main program. The function body is between the “{“ and “}” characters. Every
C++ statement is terminated by a “;’ (semicolon) character. Note that the names of
macrovariables in the .reg and .sav files have been rewritten with a “[t]” after them.
In the C++ program, each macrovariable is actually stored as a vector of data,
indexed over time. The variable t indicates the number of the year in which the
model is solving, for example 2017. Typical operators are ‘+’ for addition, ‘-‘ for
subtraction, ‘*’ for multiplication and ‘/’ for division. The ‘=’ operator sets the left
hand side variable equal to the right hand expression. In other words, it copies the
value of the right hand side expression into the left hand side variable. Notice that

 IWC 2018

 32

the last statement, beginning with “pi[t] = …” extends over two lines. The line is not
finished until the terminating “;”.
All “f” and “id” statements were passed through as statements in the model code,
and they are both passed in the form “<value> = <expression>”. What happened
with the “fex” commands, and what is their purpose? Now we are ready to discuss
this important question.

2.6 Trying it Out
As we mentioned, IdBuild usually works with a special input file called ‘master’.
Although IdBuild gets called automatically when you choose the G7 menu item
Model | Run IdBuild and Compile Model, it can also be run from the command line
with:

idbuild master

You can leave G7 running, but go back to the command prompt by clicking on the
Rocket icon on the task bar. You will see the lines of the master file and the save
files that are included with the “iadd” command.
IdBuild has just created a new hist.bnk, heart.cpp, tseries.inc, and several other
files.

2.7 The Purpose of “f”, “fex” and “id” Statements
To fully understand the behaviors of these commands listed in table 2.2, we should
explain a bit more about what IdBuild does. Item 1 on the list we have already
described above:

1. Processes the master file, writing C++ function code for each .sav file called
with “iadd”. These functions, and some other code, are written to the file
heart.cpp. Each function has the first part of the name of the .sav file, with
an ‘f’ appended.

2. Builds a G7 databank, named hist.bnk. This bank includes all endogenous
and exogenous macrovariables required in the model.

3. Writes a special type of file, called an include file, named tseries.inc, which
contains C++ declarations for each of the macrovariables included in
hist.bnk.

When the “f” command is used, IdBuild calculates the value of the variable on the
left hand side, places that calculated value in the hist.bnk, and also adds the
variables on the right hand side to hist.bnk, if they are not already in there. A line of
code representing the calculation is also written to heart.cpp. In the code above, an
example is the calculation of pintdiv (interest and dividend income):
pintdiv[t]= pintdivrat[t]* capinc[t];

This is an example of an endogenous variable, since it is found on the left hand
side of the ‘=’ sign.

 IWC 2018

 33

When the “fex” command is used, IdBuild calculates the value of the variable and
puts it into hist.bnk, but does not write a line of code for it. So, “fex” is a tool for
creating exogenous variables, and the variable definition is excluded from the C++
code. (You can remember the “ex” in “fex” can stand for exogenous, or excluded.)
Since this variable is exogenous, a value for it must be specified in the model
forecast. There are several different ways in which “fex” may be used. In the pi.reg
file, we have the case where it is used to create a ratio, called a behavioral ratio.
The ratio relates one variable to another. The ratio is calculated and saved to the
databank, but the ratio’s definition is not part of the model. The model will include a
line of code to calculate an endogenous variable using the ratio times the variable it
is related to.
The first two lines of pi.sav are:
fex pintdivrat = pintdiv/capinc
f pintdiv = pintdivrat*capinc

The first line creates the exogenous behavioral ratio pintdivrat, which relates
interest and dividend income (pintdiv) to total capital value added capinc. There will
be a time series of values for this ratio in the databank, and it should be projected
when making a forecast. The second line is used in the model to calculate pintdiv
from the specified value of pintdivrat multiplied by the model-calculated value of
capinc.
This type of modeling, relating variables by ratios, is quite a good method for many
variables, which include calculating taxes using tax rates, calculating savings using
savings rates, or calculating contributions using contribution rates. It is also useful
for relating values in real monetary terms to values in quantity terms. Examples of
the latter include bushels of wheat, barrels of oil, or petajoules of energy used.
The “id” statement is used only once in pi.sav, for the calculation of pi itself. The line
is:
id pi = labinc + pintdiv + piprop + piren + pigsb + pibtp – picsi

The behavior of “id” is almost like that of “f”, except that the calculated variable is
not written to the hist.bnk. Instead, the actual value of pi from the source databank
is written. A common reason to use “id” is that adding the components on the right
hand side will generate values of pi that are slightly different from the published
values, due to rounding error. We may prefer to preserve the published values in the
model databank hist.bnk.

2.8 Making Tables of Results
A simple feature in G7 that can be used to make tables in Excel is the “(gridty)pe”
command. This will type out one or more variables into a rectangular grid, which
can then be copied and pasted into Excel or Calc. Here is an example, using some of
the important variables you have met so far:
vam base
tdates 2010 2025
gridty c vfix g x m pi pidis

 IWC 2018

 34

Figure 2.3 Results of “gridty” Command

Click at the bottom right corner of this grid (pidis in 2025) and pick the Copy menu
option. You’ll see the following dialog box appear:
Figure 2.4 Copying from a Grid

Click the OK button.
Now, start Excel, and create a blank worksheet. Click in the sheet where you would
like to paste the data. Use the Excel paste function (Shift+Ins, or Ctrl+V). This is
one quick method to export historical data or results of a scenario to Excel or
another program.
Another way to make tables is to use the Compare program. This program can make
tables in text, Excel (.xls) and other formats. It can show the results of historical
and/or forecast data. Results for one databank can be displayed, or results from
multiple databanks (scenarios) can be compared, hence the name of the program.
Compare uses table definition files, called “stub” files, usually with the file extension
“.stb”. Below is a stub file for Tux to make a table of Personal income and its
components.
pi.stb
pi.stb - Components of Personal Income, U.S.
\dates 2010 2012 2013 2014 2015 2016 2010-2016
\8 0

 IWC 2018

 35

*
&
pi ; Personal income
labinc ; Compensation of employees
piprop ; Proprietors' income
piren ; Rental income
pintdiv ; Dividend and interest income
pigsb ; Government social benefits
pibtp ; Business transfer payments to persons
picsi ; Less: Contributions for social insurance
\f pichk = labinc+piprop+piren+pintdiv+pigsb+pibtp-picsi
pichk ; Personal income check

A table has rows and columns. The rows are either values of variables or
expressions, and the columns are dates, or date expressions. An example of a date
expression would be the specification of the average growth rate (two dates joined by
a hypen). Table lines are typically in the format:
<variable name or expression> ; <variable text>
The variable name is the name of the variable in the model databank. For a
macrovariable, this is simply the macrovariable name. For a vector, use the vector
name followed by the sector number (i.e., emp1). For a matrix element, the row and
column are separated by a period (i.e., am10.2).
Comments in the stub file are preceded by the ‘#’ character. Most Compare
commands start with the ‘\’ character. The “\dates” command specifies the columns
of the table. These may individual dates, growth rates, or other expressions which
can be used to specify sums or averages. The stub file above specifies 6 columns of
individual years, and one growth rate.
The command “\8 0” tells Compare that the fields of the table should have width 8
and 0 decimal places. The ‘*’ command indicates to start a new page, or new
worksheet if in an Excel file. The ‘&’ command tells the program to print a line of
dates.
The second line from the bottom shows one of the commands available in Compare.
This is the “\f” command, similar to the “f” command in G7. In this case, it creates
the variable pichk to provide a check of the data. The creation of this variable is local
to this session of Compare. It is not put into the model databank. The next line uses
that variable to display it.

 IWC 2018

 36

Figure 2.5 Tables Dialog

There are several ways to run Compare. From within G7, pick the menu option
Model | Tables – Configure and Run. You’ll next see the following dialog:
First specify the stub file “root name”. This is the name of the file pi.stb, without the
“.stb” extension, in other words, just use “pi”. The second field to fill out is “Name of
output file”. Here I have given the name pitable.txt. The middle part of the dialog is
only relevant if you are comparing two or more databanks or scenarios. This gives
you the option of comparing in actual values, differences, or percentage differences.
The next part of the box allows you to specify up to 10 alternative databanks. In this
case, we’ll just pick one. For each databank, use the drop down list at the left to
specify the type of databank. For most examples in these sessions, this will be
“Vam”. (The “vam” option actually opens up a vam file and its accompanying
macrovariables G bank as a pair.) Finally, give the root name of the databank (i.e.,
without the “.vam” at the end). We specify “base”, for the base scenario.
Click the OK button. You’ll see the Compare program running in a Command
Prompt window.

 IWC 2018

 37

Figure 2.6 Run of Compare

Hit any key to continue, and you are brought back to the main G7 window. We’ll
use the G7 editor to look at the table we just created. Type “ed pitable.txt” in the G7
Command box and hit [Enter].
Figure 2.7

The editing session is shown in Figure 2.8. If the contents of your table do not line
up properly, choose a font which is fixed width. In the editor menu, pick File | Font,
then Courier New (9 pt).
The variable descriptions (after the ‘;’ character) are displayed at the left margin.
The body of the table shows the values, and/or growth rates of the variables and/or
expressions specified. Over the period 2010-2016, which component of personal
income in the U.S. grew the fastest? Which grew the slowest?

 IWC 2018

 38

Figure 2.8 Viewing a Table in the G7 Editor

Stub files can be created for elements of vectors, matrices, or macrovariables. Quite
large tables are commonly made, which will make a small book!
The command “\xls” specifies that output will go to an Excel file. Let’s now modify
pi.stb slightly, and practice some more with Compare. In the G7 Command box, type
“ed pi.stb”.
After the line “\8 0” click and type the [Enter] key to open up a new line. Type “\xls”
on the new line. Now save the file by clicking the “Save” menu item, and close the
G7 editor.
Figure 2.9 Editing pi.stb

We’ll make the table again. Since all of the arguments to the dialog box will be the
same (only the pi.stb file changed), use the menu option Model | Express Tables. If
Excel is installed on your computer, you should see the text:
Writing Excel XLS spreadsheet to pitable.xls.

in the output from Compare, and an Excel file should briefly flash up in the
background. Next, we’ll open the Excel file. From Windows explorer, navigate to
J:\Session2, and look for the file pitable.xls. Double-click on that file, and you
should see the following sheet appear:

 IWC 2018

 39

Figure 2.10 Compare Table in Excel File

 IWC 2018

 40

C++ Interlude 2: Recipes

A program has much in common with a recipe. Some programs consist merely of sequential steps, like
the program in the first C++ Interlude. Some recipes include the idea of a loop. “Add five cups of
sugar”, can be interpreted to mean “Add one cup of sugar, then another, and repeat until we have five.
In C++ this might be written:
int i;
for(i=1;i<=5;i++)
 AddOneCupSugar();
The for loop has 3 parts, separated by semicolons. The first one is usually called initialization. Here,
we set the integer counter i equal to 1. The second is called test. Here we check that i is still less than
or equal to 5. The third is an action. The symbol ‘++’ means “increment i by one”. This type of loop,
which is very common in C and C++, loops from 1 to 5. The value of i may be used or ignored by the
statements in the body of the loop. If the body of the loop has more than one statement, we need to
group the statements with curly brackets ({}). If we are making a cake, we may also need flour:
int i;
for(i=1;i<=5;i++) {
 AddOneCupSugar();
 AddOneCupFlour();
 }
Both AddOneCupSugar() and AddOneCupFlour() are functions, which must be defined elsewhere in
the program. The indentation in these examples is simply a matter of preference of style. However, it
is good to follow one indenting style consistently.

Recipes may also be conditional. If you’re making American biscuits, they may be standard,
buttermilk, peppery pork, strawberry or one of about 30 others! In each case, some of the ingredients
are the same, some are different.
AddStandardDryIngredients();
if(Standard)
 AddMilk();
else if(Buttermilk) {
 AddBakingSoda();
 AddButterMilk();
 }
else if(PepperyPork) {
 AddMilk();
 AddPepperyPork();
 }
else if(Strawberry) {
 AddMilk();
 AddStrawberries();
 }
The conditions inside the parentheses after the if statements are examples of Boolean (true or false)
expressions. If they are true, the next statement or body of statements is executed. Other looping
methods are do { body of loop } while (condition); and while (condition) { body of loop}; This little
program (tenfactorial.cpp) calculates the product of the first 10 integers. Remember, type ‘c’ to go to
the \CPP folder. The program can be compiled and linked with ‘bc tenfactorial’. You can then run it
by typing ‘tenfactorial’.
#include <stdio.h>
int main(void) {
 int i=0, factorial=1;
 do {
 i++;
 factorial = i*factorial;
 } while (i<10);
 printf(" 10 factorial is %d\n", factorial);
}

 IWC 2018

 41

SESSION 3. ESTIMATION OF SECTORAL EQUATIONS
Once you have mastered a technique, you hardly need look at a recipe again and can
take off on your own.

In this session, we’ll start to explore the creation of the sectoral equations that make
up the meat of the interindustry model. The first version of Tux introduced in
Sessions 1 and 2 did not have any sectoral equations, but rather shared down from
macro totals. This is an example of a top down model. We will start converting Tux
to a bottom up model, which we’ll call version 2.
Version 1 had variables only in current prices. In this session we’ll introduce IO
accounts and modeling in constant prices, and skim some knowledge about solving
for these prices themselves using the IO table.
If you still have the datastick inserted, and see the launch icon active at the bottom
of your screen (), click that icon to bring up the command prompt. Otherwise,
open the datastick in Explorer, and double click on Launch there. Type ‘3’ and then
the [Enter] key to navigate to the Session3 folder. This folder contains the Tux 2
database and model.
Start G7 as before by typing ‘g7’ and then the [Enter] key.
Type:

look a

to see the contents of the Tux 2 database.
Figure 3.1 The “look” Window of Tux 2

GDP and its components in constant prices are indicated with a capital ‘R’ at the end
of the name. Start a new text file in the G7 editor with the command:

ed real.sh

Add the following text to that file:

 IWC 2018

 42

Figure 3.2 Showing Real and Nominal Variables with real.sh

Click on the ‘Run’ menu to display the 3 graphs of real and nominal GDP, and the
GDP deflator. In which year do the lines cross? Which is rising faster, real or
nominal?
The next section reviews the structure of the Tux 2 database and the naming
conventions.

3.1 Inventory of Ingredients
As we incorporate constant price IO data and sectoral prices into Tux version 2, we
add new matrices, vectors and macrovariables to the model. These are like the yeast
we neglected to add to the bread in Tux 1. Table 3.1 lists the additional matrices and
vectors. This table, combined with table 1.2 provides the entire list of matrices and
vectors. The names of the constant price vector variables are almost the same as the
current price variables, but with the ‘z’ at the end removed.
The database has also been filled with data on domestic output prices (outp), import
prices (impp) and a weighted price (wtp) which is a mixture of domestic and import
prices. These are different prices for each sector.
You can view the vector of output prices with the command:

sh outp

You will notice that all of the prices are 1.0 in 2009. This is the base year for prices.
Constant price variables are said to be in 2009 constant dollars, or just 2009$ for
short.

The constant price A-matrix in flows is amf. Show this matrix for 2016 with

sh amf y 2016

The vector fd is total final demand by commodity in millions of 2009$. The following
calculation yields the sum of real final demand for the 9 sectors, in billions of 2009$.

f sum = @csum(fd,1-9)/1000.

What do you think this sum is?

 IWC 2018

 43

Table 3.1 – Additional Matrices and Vectors in Tux, Version 2

You are correct! It is real GDP. This can be verified by:

ty sum 2012 2016
ty gdpR

Table 3.2 shows several new macrovariables that have been added to version 2.
These are formed as the simple sums of the elements of the constant price vectors
comprising the expenditure side components of GDP. As mentioned above, the real
macrovariables have an ‘R’ at the end. The other variables are the same as in
version 1.
Table 3.2 – Additional Macrovariables in Tux, Version 2

Name Description
A-Matrix, Constant Dollars

amf A-matrix in flows, Constant dollars
am A-matrix coefficients
linv Leontief inverse

Output, Final Demands and Related Vectors, Constant Dollars
out Output
pceio Personal consumption expenditure
gov Government spending
gpfi Gross Private Fixed Investment
ven Inventory change
ex Exports
im Imports
fd Total final demand
dd Domestic demand = out+im-ex
impshr Imports share = im/dd
inter Total row intermediate
intcol Total column intermediate

Prices
outp Domestic output prices
impp Import prices
wtp Weighted domestic and import prices

Name Description
GDP and its Components, Constant Prices

gdpR Gross domestic product
cR Personal consumption expenditures
vfR Gross private fixed investment
viR Inventory investment
gR Government consumption and investment
xR Exports
mR Imports

 IWC 2018

 44

3.2 Adding Some Spice: Investment Equations
In session 2, we learned something about the use of the IdBuild program for
incorporating macroeconomic equations and identities into the model. To review, we
started with files with the extension “.reg”, which were run in G7. This process
creates files with the extension “.sav”, which will be the input for IdBuild. The
“master” file that is read by IdBuild contains a sequence of “iadd” and other
statements. Each “iadd” statement starts with a .sav file and then generates a
callable function in “heart.cpp”. The name of this function is the first part of the .sav
file name, with an ‘f’ appended.
Remember that we used pi.reg to create pi.sav. The statement “iadd pi.sav” in
master generated the heart.cpp function pif().
IdBuild can also generate equations for vector variables, such as personal
consumption, investment, labor productivity and wages. We’ll introduce this topic by
showing how to estimate a simple set of investment equations. These will certainly
not be the final version of equipment investment equations we will use, but they are
a start. The vector gpfi is gross private fixed investment, which includes equipment,
structures and intellectual property investment. If you do the command “sh gpfi”,
you can look at the data first, and check which sectors actually have data.
Here is gpfi.reg, with comments added to help understand the general pattern.
gpfi.reg

gpfi.reg - Regressions for gross private fixed investment by sector.
Nonzero sectors are 2,4-8
fdates 1997 2016 # “fdates” determine the dates of computations
lim 2001 2016 # “lim” sets the regression interval
gtfile sec9.gtf # “gtf” reads a file of sectoral titles
save gpfi.sav # “save” starts the .sav file
catch gpfi.cat # “catch” starts the catch (.cat) file
f gppR = gdpR - gR # private real GDP
f d = gppR-gppR[1] # first difference in private real GDP
do { # “do” command loops over sectors
 gti %1 # “gti” gets a title for this sector
 r gpfi%1 = gppR,d,d[1],d[2],d[3] # “r” is regression
 gr * # “gr *” plot fitted and actual values
 } (2,4-8) # the numbers in parenthesis control the do loop
catch off # close the catch file
save off # close the save file

It’s good to begin every file with a comment (started by ‘#’) that tells the filename
and what it does. The next statements set the “fdates” and limits (“lim”). If you use
lagged variables (which this equation does), you generally want the “fdates” to start
earlier than “lim”.
Next come the “save” and “catch” statements. The save file will be the input to
IdBuild. The catch file saves the commands and some of the output which appears
on the output window, including the tables of regression results.

 IWC 2018

 45

There are several new G7 commands in this file. The first two new commands which
should be explained are “gtfile” and “gti”, which work together. The “gtfile”
command opens a “G7 titles file”, which we often name with the extension “.gtf”. The
“gti” command, with a number, will set the title to that particular title in the titles
file. This will become clear when you watch the file run.
Since you are still an apprentice chef, this file has already been created for you in
the Session3 folder. Open it up in G7 using the command:

ed gpfi.reg

Now you can run it by either clicking on the Run menu item, or pressing the F9
function key.
Figure 3.3 Running the gpfi.reg File

This investment equation relates total investment by producing sector to real gross
private product (gppR) and its first differences (d).
The “do” command in G7 runs a loop. The statements between the ‘{‘ and the ‘}’
characters are repeated. The numbers in parenthesis “(2,4-8)” indicate to run the
loop over sector 2, and then sectors 4 to 8 inclusive, which are the sectors which have
investment data. In each pass through the loop, the code ‘%1’ is replaced by the
current sector.
Since the right-hand side variables are used by all sectors, we calculate them before
the loop. Gross private product is just GDP with government expenditures (gR)
removed. A first difference is defined as a variable minus the lagged value of that
variable. Remember ‘[1]’ means the variable lagged once, ‘[2]’ lagged twice, and so
on.

f gppR = gdpR - gR
f d = gppR-gppR[1]

The regression for each sector uses the same right hand side variables:

 IWC 2018

 46

r gpfi%1 = gppR,d,d[1],d[2],d[3]

There are 6 right-hand side variables, including the constant term (intercept). Here
are the regression results for sector 2:
gpfi.cat (extract)

r gpfi2 = gppR,d,d[1],d[2],d[3]

: 2 Mining and quarrying
 SEE = 12750.89 RSQ = 0.6348 RHO = 0.18 Obser = 16 from 2001.000
 SEE+1 = 13049.58 RBSQ = 0.4521 DW = 1.65 DoFree = 10 to 2016.000
 MAPE = 10.26
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 gpfi2 - - - - - - - - - - - - - - - - - 85982.05 - - -
 1 intercept -118645.38166 18.5 -1.38 2.74 1.00
 2 gppR 16.94981 44.8 2.34 1.09 11886.48 0.729
 3 d 11.97100 1.4 0.03 1.07 211.19 0.132
 4 d[1] -12.47890 1.1 -0.03 1.07 212.98 -0.138
 5 d[2] 22.16269 3.4 0.05 1.01 208.33 0.240
 6 d[3] -6.37641 0.4 -0.02 1.00 209.13 -0.069

The area in the top of this table includes some general descriptive regression
statistics. SEE is the standard error of the estimate, a measure of the average size of
the errors. RSQ is the R-squared, or general measure of fit, which varies between 0
(no fit) and 1 (perfect fit). RHO is a measure of the autocorrelation of the error
terms. If the equation tends to miss on the same side for many periods in a row,
RHO will be higher. MAPE is the mean absolute percentage error, which measure
the average size of the error term in comparison with the left hand side variable.
Following the general statistics is one row listing the name and the mean of the left-
hand side (dependent) variable, and six lines for the right-hand side (independent)
variables. The first column is the variable name, and the second column is the
regression coefficient, which tells how much the left-hand side variable will change if
that right hand side variable were to increase by one unit. The column labeled
‘Mexval’ is the marginal explanatory value. This is a measure of the contribution of
each variable to the overall fit of the equation. t is defined as the percentage by
which the SEE would increase if that variable were to be removed from the
equation. We will discuss ‘Elas’, ‘NorRes’ and ‘Beta’ in a future session. The column
labeled ‘Mean’ tells the mean or average value of each variable.

 IWC 2018

 47

Figure 3.3 Regression Plot for gpfi2

Figure 3.3 shows the regression plot, which compares the actual and fitted values of
the regression.
Here is part of the gpfi.sav file created from running gpfi.reg in G7.
gpfi.sav

f gppR = gdpR - gR
f d = gppR-gppR[1]
ti 2 Mining and quarrying
r gpfi2 = -118645.381660*intercept +
 16.949807*gppR +
 11.971004*d -
 12.478899*d[1] +
 22.162694*d[2] -
 6.376413*d[3]
d
ti 4 Construction
r gpfi4 = 2042750.539877*intercept -
 119.828107*gppR +
 151.941579*d +
 313.885348*d[1] +
 194.927636*d[2] +
 288.877405*d[3]
d
< repeated for sectors 5-8 >

Next, we will add some lines to the master file which is used by IdBuild. (Note that
this file has already been slightly modified from the version you saw in section 2.5.)
These are highlighted in bold below:
master

Master File for Tux9: Model 2
iadd pseudo.sav
iadd RealGDP.sav
iadd pi.sav
iadd account.sav
iadd vfR.sav
ba exim

2 Mining and quarrying2 Mining and quarrying
136437

98769

61101

2005 2010 2015
 Predicted Actual

 IWC 2018

 48

iadd exim.sav
isvector gpfi
iadd gpfi.sav
isvector clear
iadd Fixes.sav
end

The “isvector” command tells IdBuild that gpfi is a vector. The code that is written
in heart.cpp for vectors and for macrovariables is different, as we shall see. After
calling “iadd gpfi.sav”, the “isvector” command is given again, this time with the
option “clear”.
After IdBuild is run (‘IdBuild master’) a new heart.cpp file is created. (Feel free to
look at the code in heart.cpp using np, ed, wp or G7 editor.) Here is the code for the
investment function written by IdBuild.
Extract from Heart.cpp

void gpfif(Vector& gpfi)
{
 gppR[t]= gdpR[t]- gR[t];
 d[t]= gppR[t]- gppR[t-1];
/* 2 Mining and quarrying */
 gpfi[2] = +coef[1][0]+coef[1][1]*gppR[t]+coef[1][2]*d[t]+coef[1][3]*d[t-1]+
coef[1][4]*d[t-2]+coef[1][5]*d[t-3];
/* 4 Construction */
 gpfi[4] = coef[2][0]+coef[2][1]*gppR[t]+coef[2][2]*d[t]+coef[2][3]*d[t-1]+
coef[2][4]*d[t-2]+coef[2][5]*d[t-3];
/* 5 Manufacturing */
 gpfi[5] = coef[3][0]+coef[3][1]*gppR[t]+coef[3][2]*d[t]+
coef[3][3]*d[t-1]+coef[3][4]*d[t-2]+coef[3][5]*d[t-3];
/* 6 Trade */
 gpfi[6] = +coef[4][0]+coef[4][1]*gppR[t]+coef[4][2]*d[t]+
coef[4][3]*d[t-1]+coef[4][4]*d[t-2]+coef[4][5]*d[t-3];
/* 7 Transportation */
 gpfi[7] = coef[5][0]+coef[5][1]*gppR[t]+coef[5][2]*d[t]+coef[5][3]*d[t-1]+
coef[5][4]*d[t-2]+coef[5][5]*d[t-3];
/* 8 Services & other */
 gpfi[8] = coef[6][0]+coef[6][1]*gppR[t]+coef[6][2]*d[t]+
coef[6][3]*d[t-1]+coef[6][4]*d[t-2]+coef[6][5]*d[t-3];
}

Note that macrovariables are referenced using the variable name, with a date (t, t-1,
t-2, etc.) in brackets. So ‘d[t-3]’ means the value of the variable d lagged three years.
Vector elements are referenced using the vector name followed by the sector or
element number in brackets. The expression ‘gpfi[7]’ means gpfi for sector 7.

Before looking at how the gpfif() function is added to the model, let’s take a peak into
the model code for the first time.

3.3 A Peak Into the Tux Model
We promised in session 1 (“What is the Tux Model?”) to have a look into the
computer code for the model. Now it’s time to open the oven to see what’s cooking!
First, here is a very simple (‘do nothing’) model in the file Skinny.cpp that shows the
main structure of the code:

 IWC 2018

 49

Skinny.cpp
extern char *Version; // Interdyme Version
#include "dymesys.h" // All includes for general Interdyme
#include "tseries.inc" // Re-written each time by IDBUILD.
#include "heart.h"
#include "user.h" // All global variables for user model.

// Function Prototypes go here:

void loop(void)
{
 clrscr();
 gotoxy(20,1);
 cprintf("Generic Interdyme Model");
 gotoxy(31,2);
 cprintf(Version);
 gotoxy(30,3);
 cprintf("June, 2018\r\n");

 // Matrices and Vectors:
 Matrix B("bm"), A("am"), C("cm");
 Vector out("out"), emp("emp");
 for (t = godate; t<= stopdate; t++) {
 cprintf("\r\n%5d",t);
 // Load all vectors and matrices.
 load(t);
 A = B*C;
 store(t);
 }
 printf("\nThe InterDyme run has finished. Use G7 or Compare to view results.\n");
}

At the top of skinny.cpp are several #include statements, which include function
declarations and global variables. The main() function for Interdyme is in a different
file, named dyme.cpp. The file model.cpp will define the function loop() and some
other functions, which implement the model. The loop() function above first prints
some messages to the screen. Next come declarations for 3 matrices and two vectors.
We’ll delve into the mechanics of these declarations soon. For now, you should
observe that the declaration
Matrix B("bm",'y','n'),

means that the matrix will be known as B in the program, but that it will be tied to
the matrix declared as “bm” in the vam.cfg file. In other words, the declaration links
the vector or matrix used in the program with the corresponding vector or matrix in
the vam file. The vectors out and emp have the same name in the program as they
have in the vam file.

Next comes the main loop of the model, over the years of the scenario. Note that
although these are normally the years of a forecast, they may also be used to specify
a historical simulation. The parameters godate and stopdate are usually specified in
the configuration file dyme.cfg. For each year t a message is printed to the screen to
indicate the model is solving for that year. Then all matrices and vectors declared
above are loaded into memory for period t with the load(t) function call. Next follow
the main calculations of the model, represented by the line ‘A=B*C;’. Finally, the
current set of matrices and vectors is written back to the vam file with the function
call store(t). The loop then proceeds to the calculations for the next year, until all
years specified have been completed.

 IWC 2018

 50

With this general structure as an introduction, let’s now look at the code in the Tux
2 model.cpp. Note how the overall structure is the same as the small model we just
looked at. Everything between the load(t) and store(t) statements contains the body
of the model calculations, and can be considered to replace the ‘A=B*C’ statement in
the small model.
Core of Tux 2 Model.cpp
// Loop through the years of the simulation
for (t = godate; t<= stopdate; t++) {
 // Load vectors and matrices for the current year.
 load(t);
 Iteration = 0;
 // Initialize convergence variables: consumption and investment
 oldinvtot = vfR[t]; oldpcetot = cR[t];
 while(Iteration < 20){
 Iteration++;
 // Apply exogenous macrofixes
 Fixesf();
 // Forecast final demand vectors
 vfRf(); // Aggregate investment function
 gpfi = vfR[t]*1000.*gpfic; // billions to millions
 ven = viR[t]*1000.*venc;
 gov = gR[t]*1000.*govc;
 ex = xR[t]*1000.*exc;
 pceio = cR[t]*1000.*pceioc;
 impshr.fix(t);
 fd = pceio + gov + gpfi + ven + ex;
 // Calculate the IO Solution
 Seidel(am, out, fd, im, ex, dd, impshr, triang, toler);
 // Recalculate fd, with imports subtracted
 fd = fd - im;
 // Forecast value added vectors, calculate prices
 labc.fix(t);
 topic.fix(t);
 gosc.fix(t);
 lab = ebemul(labc,out);
 topi = ebemul(topic,out);
 gos = ebemul(gosc,out);
 va = lab+gos+topi;
 uva = ebediv(va,out);
 outp = linv*~uva; // Price solution
 outz = ebemul(out,outp);
 impp.fix(t); // Import price
 imz = ebemul(impp,im);
 wtp = ebediv(outz+imz, out+im);
 // Calculate macro identities
 gdpR[t] = fd.sum()/1000.; // millions to billions
 if(t>MacEqStartDate){
 labinc[t] = lab.sum()/1000.;
 capinc[t] = gos.sum()/1000.;
 topinc[t] = topi.sum()/1000.;
 pif();
 accountf();
 eximf();
 }
 // Check for convergence
 invdif = fabs(vfR[t] - oldinvtot);
 pcedif = fabs(cR[t]- oldpcetot);
 cprintf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\r\n",Iteration,
 c[t],pcedif,invdif);
 oldinvtot = vfR[t]; oldpcetot = cR[t];
 if(invdif < .5 && pcedif < .5) break;
 }
 // Here when both Investment and PCE have converged
 setrho = 'y';
 vfRf();
 setrho = 'n';
 // Store vectors and matrices for the current year.

 IWC 2018

 51

 store(t);
 } // end t

The model is simultaneous not recursive, since income generated by industry
production leads to the calculation of total consumption expenditures. For this
reason, there is an iteration loop, starting with setting the iteration counter to zero.
Two variables are used to check convergence: real consumption cR and real
investment vfR. Each iteration, the total of consumption and investment is saved in
the variables oldpcetot and oldinvtot. At the end of the iteration loop, the current
values of cR and vfR are compared with the previous values, and if the difference is
bigger than some predefined tolerance (0.5 in our case), the loop continues. (In this
program, the maximum number of iterations is set at 20, which doesn’t allow full
convergence, but this can be increased.)
The first section of code calculates all final demand variables except for imports.
Fixesf();
// Forecast final demand vectors
vfRf(); // Aggregate investment function
gpfi = vfR[t]*1000.*gpfic; // billions to millions
ven = viR[t]*1000.*venc;
gov = gR[t]*1000.*govc;
ex = xR[t]*1000.*exc;
pceio = cR[t]*1000.*pceioc;
impshr.fix(t);
fd = pceio + gov + gpfi + ven + ex;

The line Fixesf() is a function that applies macrofixes to variables such as vfR, viR,
gR, etc. The next line calls vfRf(), which is an aggregate investment function
(estimated by G7 and run through IdBuild). The next 5 lines use the share vectors
gpfic, venc, govc, etc. to simply share out the macro totals. (we need to multiply the
macro totals by 1000. since they are in billions and the vector data are in millions.
The vector impshr is defined as the share of imports in domestic demand dd, or
im/dd. The vector dd can be defined as either:
 𝑑𝑑𝑑𝑑 = 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑖𝑖𝑖𝑖 − 𝑒𝑒𝑒𝑒 3.1
or
 𝑑𝑑𝑑𝑑 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑔𝑔𝑔𝑔𝑔𝑔 3.2
since
 𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑒𝑒𝑒𝑒 − 𝑖𝑖𝑖𝑖 3.3
The line
impshr.fix(t);

is where fixes (if any) are applied to the impshr vector. fix(t) is a member function of
the Vector class. It is called by putting a dot ‘.’ after the vector name, and then the
function call.
The next line:
fd = pceio + gov + gpfi + ven + ex;

 IWC 2018

 52

is an example of vector addition. In Interdyme, the Vector class has several
functions and operators defined. We’ll see a few more of these functions and
operators in the rest of the code.
In the version of Tux shown, the IO solution for output is next calculated with the
Seidel() function:
Seidel(am, out, fd, im, ex, dd, impshr, triang, toler);
// Recalculate fd, with imports subtracted
fd = fd - im;

This function basically calculates the IO solution (shown below as equation 3.6), but
instead of using the Leontief inverse, it uses an iterative operation known as Gauss-
Seidel. As the iteration proceeds, imports of each commodity are calculated based on
the current estimate of dd within Seidel. The vector fd that was used as input to
Seidel was actually final demand before subtracting imports. After the Seidel()
function finishes, imports are subtracted so that fd has the correct values.
Next we turn to the calculation of the value added vectors lab, topi and gos. Each
value added vector has a vector of coefficients that relate that value added category
to real output. For example, labc1 = lab1/out1. These can be fixed in the base.vfx
file, or left constant. Next, the line ‘lab=ebemul(labc,out)’ does an element-by-
element multiply of these coefficients by real output to obtain the lab vector. The
calculations for topi and gos are similar. Finally, total value added va is formed as
the sum, and unit value added is formed by element-by-element division.
// Forecast value added vectors, calculate prices
labc.fix(t);
topic.fix(t);
gosc.fix(t);
lab = ebemul(labc,out);
topi = ebemul(topic,out);
gos = ebemul(gosc,out);
va = lab+gos+topi;
uva = ebediv(va,out);

The next line
outp = linv*~uva; // Price solution

does the IO price solution. In the line above, outp is the domestic output price, the
matrix linv is the Leontief inverse, uva is unit value added, and the character ‘~’ is
the transpose operator in Interdyme.
The price calculations are completed with the following lines:
outz = ebemul(out,outp);
impp.fix(t); // Import price
imz = ebemul(impp,im);
wtp = ebediv(outz+imz, out+im);

The prices calculated from the IO price solution are multiplied by real output out to
obtain nominal output outz. Import prices are exogenous, and so are fixed. Nominal
imports is calculated, and the weighted price wtp is defined as the ratio of nominal
outz+imz and real out+im.
That completes the price calculation and we move on to some macroeconomic
identities. Here, the very useful sum() function comes into play. The line:
gdpR[t] = fd.sum()/1000.; // millions to billions

 IWC 2018

 53

forms the macrovariable real GDP gdpR[t] as the sum of all elements of real final
demand fd, dividing by 1000. to obtain billions.
The lines:]
if(t>=MacEqStartDate){
 labinc[t] = lab.sum()/1000.;
 capinc[t] = gos.sum()/1000.;
 topinc[t] = topi.sum()/1000.;
 pif();
 accountf();
 eximf();
 }

are executed only when t is greater than or equal to the variable MacEqStartDate
(this is generally the last year of data availability for macrovariables, and is set in
dyme.cfg.)
The macrovariables labinc, capinc and topinc are formed as sums of the value added
vectors. The functions pif(), accountf() and eximf() are functions supplied using
IdBuild.
Finally comes the check for convergence:
// Check for convergence
invdif = fabs(vfR[t] - oldinvtot);
pcedif = fabs(cR[t]- oldpcetot);
cprintf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\r\n",Iteration,
 c[t],pcedif,invdif);
oldinvtot = vfR[t]; oldpcetot = cR[t];
if(invdif < .5 && pcedif < .5) break;
}

The cprintf() statement is the source of the output we see on the screen, while
running the model.
We’ll discuss the function of the setrho variable in Session 5, but for now observe
that some functions are called again with setrho equal to ‘y’. The last statement in
the year loop is the store(t) which writes calculated values of vectors and matrices
back to the vam file.

// Here when both Investment and PCE have converged
 setrho = 'y';
 vfRf();
 setrho = 'n';
 // Store vectors and matrices for the current year.
 store(t);
 } // end t

3.4 Putting the New Equations into the Model
You have already estimated the new gpfi equations in G7 and modified the master
file to have them written to heart.cpp by IdBuild. Now we’ll make some slight
changes to model.cpp to put the equations into the model and test them.
Close G7 by typing the “q” command, pressing Alt+F4, or clicking on the red ‘X’ in
the title bar. You will be returned to the command prompt.
Now type

np model.cpp

 IWC 2018

 54

to edit the code for the model in Notepad++.
The model already has an equation for the aggregate investment variable vfR. This
code is shown in bold below, starting at about line 142:
 Fixesf();
 if(t>= MacEqStartDate) {
 vfRf();
 }
 gpfi = vfR[t]*1000.*gpfic; // billions to millions
 ven = viR[t]*1000.*venc;

We’ll change this code to comment out (turn off) the aggregate equation (anything
after the characters ‘//’ is a comment, and not used in the program), and use the
sectoral equations we just estimated (see the new code in bold).
 Fixesf();
 //if(t>= MacEqStartDate) {
 // vfRf();
 // vfRind[t] = vfR[t];
 // }
 //gpfi = vfR[t]*1000.*gpfic; // billions to millions
 if (t>=gpfi.LastData()) {
 gpfif(gpfi);
 vfR[t] = gpfi.sum()/1000.;
 }

After you have made these changes, save model.cpp with Ctrl+S, and exit with
Alt+F4. Now, we will run IdBuild again, but this time from the command line:

idbuild master

Next, we will recompile and link the model with the statement:
make

You should see the following on the screen:
Figure 3.4 Output from ‘make’, When All Goes Well

If the program compiles successfully, you will have a new version of dyme.exe, with
your new investment equations included.
These two commands:

idbuild master
make

can also be run together using the batch file idmodel.bat, by just typing
idmodel

 IWC 2018

 55

3.5 Tasting (Testing) the New Equations
As a good chef should periodically taste her broth, a good modeler should test her
model after adding new ingredients. In this section, we’ll run the model with the
new investment equations, and have a look at what happens.
First, double-check that you made the suggested changes to the master file and to
model.cpp. Did you run ‘idbuild master’? Were you able to successfully compile and
link the revised model.cpp? Check the date and time of dyme.exe. If in doubt, run
‘make’ again.
Next, we’ll create a new base, called ‘baseinv’ which we can compare against the
previous base. I’ll review the sequence for running the model.
First, copy the fixes and exogenous variable files. In the command prompt window
(click on rocket icon):
Figure 3.5 Copying the Fixes Files for New Scenario

If you are more comfortable using Explorer to make the copies, go right ahead.
We won’t make any changes to the contents of these files, but just keep a separate
copy for the new scenario. Now return to G7. We’ll be following the same steps used
in section 1.6.
Figure 3.6 Interdyme Run Form for “baseinv”

Choose the menu item Model | Run Dyme Model, or simply press the F8 key.

 IWC 2018

 56

Fill in the Run Form as shown in Figure 3.6. If all goes well, the appearance of the
model run should be quite similar to Figure 3.7.
Figure 3.7 Output of Model Run for “baseinv”

Remember to hit the [Enter] key once more when this screen appears.
Create the following file in the G7 editor: (ed testgpfi.add).
testgpfi.add

testgpfi.add - Check out the gpfi equations

vam base a
vam baseinv b
lb

t a.vfR 2014 2020
t b.vfR
gtfile sec9.gtf
sh b.gpfi

ti Compare Total Investment
gr a.vfR b.vfR 2010 2016 2025

subti New Investment Equations (blue) / Base (red)
do {
 gti %1
 gr a.gpfi%1 b.gpfi%1
} (2,4-8)

This file compares aggregate and sectoral investment in the original base case with
the revised version including the sectoral equations. In the original base case,
aggregate investment was determined by an aggregate equation, and sectoral
investment was shared out by constant shares. In the new scenario, we’ve used the
sectoral equations, and formed aggregate investment by adding them up.
What do you observe about the comparison of aggregate investment? What about
sectoral investment?

 IWC 2018

 57

If you succeeded in getting your equations to forecast, then congratulations! This is
the modeling equivalent of making your first loaf of bread and actually getting it to
rise. If not, don’t worry, the errors are usually easy to find and fix11.
The next section delves into some of the theory of prices in an IO model, using a
small 3-sector IO database. It will be good preparation to read this before tackling
session 4.

3.6 The IO Table in Constant Prices
What is an IO table in constant prices? As we will see, the answer to this is not
always clear. In this session, we will follow the procedure of deriving a price for each
row of the table which can be used to deflate each element of that row. That same
price will be used to deflate output of each sector.
Why use an IO table in constant prices? Mainly for comparability across years.
Although tables in current prices are much easier to work with (they add up nicely
both by row and column), they conceal the effects of relative price change, and of
general inflation. To answer questions of improvements in production, of changes in
trade, and of consumer welfare, we need measures in constant prices.
The Tux database is already very aggregate, at 9 sectors. Let’s crunch it down a bit
more to 3 sectors, which is easier to gnaw on. Table 3.3 shows the data for the U.S.
in 2016.
Table 3.3 Simple IO Table for the U.S., 2016 (Billions of $)

As you can see, the disaggregation is lopsided, with most of the output in Services,
government and miscellaneous. However, it’s still an IO table. Output of each sector
is equal to final demand plus total intermediate demand across the row. Output of
each sector is also equal to total intermediate down the column, plus value added.
GDP can be formed as either the sum of final demand or of value added. For 2016, it
is $18,624 billion dollars.
The intermediate and value added elements of table 3.3 can be divided by the
corresponding column output to create a coefficient matrix. Since output is the sum
of intermediate and value added, these coefficients will sum to 1.0 down the column.
The base year of the U.S. database is 2009, which means that all price are equal to
1.0 in that year. Table 3.4 shows aggregate price indices for selected years.

11 If you are still at your wits end, there are files model2b.cpp and master2b which you can copy to
model.cpp and master, respectively, and the model should then work.

AgMin Industry ServGovtM
Final

Demand Output
Agriculture and Mining 122 539 42 57 759
Industry 105 2,234 1,692 3,540 7,571
Services, Government & Misc. 122 1,515 7,090 15,028 23,755
Value Added 410 3,284 14,930 18,624
Output 759 7,571 23,755

GDP = 18,624
Source: U.S. Annual IO Tables, Bureau of Economic Analysis

 IWC 2018

 58

Table 3.4 Domestic Output Prices in the U.S.

Note that from 1997 to 2009, the price of Agriculture and mining increased the most,
but it has declined since then, while the prices of the other sectors have risen.
Table 3.5 shows the IO table deflated to constant prices. All elements of the first row
have been divided by 0.97, the price of sector 1 in 2016. The other rows have been
divided by their prices. Real output of each sector has been divided by its
corresponding price.
Table 3.5 IO Table for the U.S., 2016 (Billions of 2009$)

Table 3.6 shows the constant price coefficients, formed by dividing the intermediate
flows in constant prices by output in constant prices. We will call this matrix A.
Element A(1,1) = .160, which is formed as 125/779.
Table 3.6 IO Coefficient Matrix (A-matrix), Constant Prices

If there were a reasonable definition of the “price” of value added, we could also
create real value added coefficients. However, in the presence of relative price
change, there would be no guarantee that the constant price IO coefficients sum to
1.0 down the column. In fact, “real value added” is usually formed as a residual, and
no cogent interpretation is supplied other than that it is “needed for adding up”. We
can ignore this concept, as it is not a necessary or useful tool for modeling.
In matrix algebra, the expression that intermediate plus final demand is equal to
output can be written:
 𝒒𝒒 = 𝑨𝑨𝑨𝑨 + 𝒇𝒇 3.4
where q is output, A is the coefficient matrix we just presented, and f is the vector of
final demand. Regrouping:
 (𝑰𝑰 − 𝑨𝑨)𝒒𝒒 = 𝒇𝒇 3.5
where I is the identity matrix. We can pre-multiply both sides by (𝑰𝑰 − 𝑨𝑨)−1.

1997 2000 2005 2009 2013 2016
Agriculture and Mining 0.66 0.68 0.94 1.00 1.31 0.97
Industry 0.75 0.78 0.91 1.00 1.14 1.08
Services, Government & Misc. 0.75 0.81 0.91 1.00 1.07 1.12

AgMin Industry ServGovtM
Final

Demand Output
Agriculture and Mining 125 553 43 58 779
Industry 97 2,062 1,562 3,268 6,989
Services, Government & Misc. 109 1,352 6,328 13,414 21,203
Output 779 6,989 21,203

Source: U.S. Annual IO Tables, Bureau of Economic Analysis, Inforum Deflators

AgMin Industry ServGovtM
Agriculture and Mining 0.160 0.079 0.002
Industry 0.125 0.295 0.074
Services, Government & Misc. 0.139 0.193 0.298

 IWC 2018

 59

 q = (I − A)−1f 3.6
The matrix denoted by (𝐈𝐈 − 𝐀𝐀)−1 is called the Leontief inverse.

3.6 The Price Solution
The calculation of domestic output prices makes use of the fact that the price of any
sector should be related to the prices of its inputs, and the amount of value added
paid to factors. In the Tux model, there are three components of value added:

• lab – Labor compensation
• gos – Gross operating surplus
• topi - Taxes on production and imports less subsidies

Total value added is va, and is equal to lab+gos+topi, by sector. We can related value
added to real output out in each sector j by the ratio:
 𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗 = 𝑣𝑣𝑣𝑣𝑗𝑗/𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗 3.7

Think of this ratio is “value added per unit of output”, or simply unit value added.
The components of input cost, or intermediate cost of sector j, can be expressed as

𝑖𝑖𝑖𝑖𝑗𝑗 = �𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑗𝑗

𝑛𝑛

𝑖𝑖=1

3.8

where ic is total intermediate cost, p is the domestic output price, 𝑎𝑎𝑖𝑖𝑖𝑖 is the direct IO
coefficient, and q is real output.
Total intermediate cost per unit of output is uic.

𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗 =
𝑖𝑖𝑖𝑖𝑗𝑗
𝑞𝑞𝑗𝑗

= �𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

3.9

Total unit cost, or price, is simply unit intermediate cost plus unit value added = uic
+ uva

𝑝𝑝𝑗𝑗 = �𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑢𝑢𝑢𝑢𝑢𝑢𝑗𝑗
3.10

In matrix notation, this is equivalent to:
 𝒑𝒑′ = 𝒑𝒑′𝑨𝑨 + 𝒗𝒗′ 3.11

where 𝒑𝒑′ is the row vector of domestic prices and 𝒗𝒗′ is the row vector of unit value
added. This identity provides a method for solving for 𝒑𝒑′. Combine the two terms
involving 𝒑𝒑′ on the left hand side, pull out 𝒑𝒑′ ,and then post-multiply both sides by
(𝑰𝑰 − 𝑨𝑨)−𝟏𝟏.
 𝒑𝒑′ − 𝒑𝒑′𝑨𝑨 = 𝒗𝒗′ 3.12

 IWC 2018

 60

 𝒑𝒑′(𝑰𝑰 − 𝑨𝑨) = 𝒗𝒗′ 3.13
 𝒑𝒑′ = 𝒗𝒗′(𝑰𝑰 − 𝑨𝑨)−𝟏𝟏 3.14
The Leontief Inverse appears again in this equation. It is the special ingredient for
performing both the quantity and price IO solution!
One other identity is extremely helpful to understand. Pre-multiply equation 3.4 by
𝒑𝒑′:
 𝒑𝒑′𝒒𝒒 = 𝒑𝒑′𝑨𝑨𝑨𝑨 + 𝒑𝒑′𝒇𝒇 3.15
The value of the equation is a scalar, as we are multiplying a 1xn vector by an nx1
vector, yielding a 1x1. Can you provide an interpretation for the meaning of each of
the terms?
Now post-multiply equation 3.11 by 𝒒𝒒.
 𝒑𝒑′𝒒𝒒 = 𝒑𝒑′𝑨𝑨𝑨𝑨 + 𝒗𝒗′𝒒𝒒 3.16
The two equations 3.15 and 3.16 together imply that:
 𝒑𝒑′𝒇𝒇 = 𝒗𝒗′𝒒𝒒 3.17
The left-hand side of the equation is simply the sum of f in current prices. From the
definition of v, the right-hand side is the sum of the value added vector. Both are
equal to GDP.

 IWC 2018

 61

G7 Cheat Sheet
Command Description Example

fex Used for model building, and passed to .sav file. Creates an
exogenous variable, which is excluded from the flow of model
calculations. The exogenous variable may be used as a control or
“lever” for scenario development

fex pisavrat = pisav/pidis

id Used for model building, passed to .sav file. Create a line of code in
the model showing an equation to be calculated, but does not create or
put the left hand side variable in the hist.bnk databank.

id gdp=c+gpfi+vi+g+x-m

save
<filename>

save off

Opens up a “save” file (.sav) for writing. The save file is used by
IdBuild as one of the components of the macrovariable part of an
Interdyme model. A function is created in heart.cpp with the name of
the save file with an ‘f’ added. (pi.sav -> pif()) The save file is closed
when the “save off” command is encountered.

save fedgov.sav

catch
<filename>

catch off

Opens up a “catch” file (.cat) for writing. Output from a session of G7
is captured to this file, until a “catch off” command is encountered.

catch pi.cat

(gtf)ile
<filename>

Specifies a G7 titles file (.gtf) to use for getting the title associated
with a given sector or category number.

gtf sec9.gtf

(gti)tle
<num>

Sets the title to that associated with the given sector or category
number.

gti 2

do Used for looping over a list of sectors or numbers. The body of the
loop is enclosed in braces. After the closing brace, the range of the
loop is specified by a group expression. Within the body, each index
replaces the string “%1”.

do {

 ty outz%1 2010 2016

} (1-9)

 IWC 2018

 62

C++ Interlude 3: Eggs Are Objects!

C++ is one of those ‘object-oriented programming’ (OOP) languages. What is an object, you ask? I
would say: something more complicated than just a variable or an array. Inside the object, there are
pieces of data, some private, some public. The object also has behavior, which is defined by functions
in the object (also called methods). Without further ado, let’s introduce The Egg:

Egg.cpp
// Egg.cpp - How eggstravagant to be an object of desire!
#include <stdio.h>
class Egg {
 int shell, white, yolk;
 public:
 void Speak(void) { printf("Humpty says:\n\n"); }
 void Break(void) { printf(" I am broken.\n"); }
 void Scramble(void) { printf(" I am being scrambled!\n");}
 void Fry(void) { printf(" I am fried!\n");}
 void Boil(void) { printf(" Boil me 7 minutes.\n");}
 void Poach(void) { printf(" I\'m really good poached!\n");}
};

int main(void) {
 Egg Humpty;
 Humpty.Speak();
 Humpty.Break();
 Humpty.Fry();
 Humpty.Poach();
 Humpty.Boil();
 return 0;
}

The first part of the program, from ‘Class Egg {‘ to the matching ‘};’, is the class definition. Egg is now
a new data type, along with int, float, char and bool. Egg has three member elements, all integer,
named shell, white and yolk. Although we don’t modify them or do anything with them in this simple
program, they are carried around in the Egg. By default, unless preceded by the public specifier, all
data elements and functions of a class are private, which means they can’t be accessed directly by
outsiders. Egg has 6 public functions, which simply print some text to the screen.

In the main function, we declare an Egg named ‘Humpty’. Data elements and functions inside of
Humpty the Egg are accessed by using the name of the variable, followed by a period (‘.’), followed by
the name of the data element or function. So, ‘Humpty.Boil();’ calls the boil function.

This program is in your \CPP folder. Go to that folder by typing ‘c’. You can view or modify the
program using ‘np Egg.cpp’. Compile and link the program with ‘bc egg’ (command prompt does not
care about small or capital letters). Run the program with ‘egg’.

Don’t get too eggcited. There is more to come!

 IWC 2018

 63

SESSION 4. WAGES AND PRICES, GOVERNMENT ACCOUNTS
This is my invariable advice to people: Learn how to cook- try new recipes, learn from
your mistakes, be fearless, and above all have fun!

Trying a few new recipes will be our focus in this session. We’ll start with an
already-modified version of Tux, which is now at version 3. The additional changes
include sectoral equations for labor productivity and annual hours worked. Data
have been added for wages per hour by industry, and also some information about
the ratio of gos (gross operating surplus) to total intermediate cost plus total labor
cost, which is called markup. We’ll focus now on three topics:

1. The estimation of simple time trend wage equations.
2. Studying the effects of changes in wages on prices
3. Developing more detailed government accounts.

If you still have the datastick inserted, and see the launch icon at the bottom of your
screen() click that icon to bring up the command prompt. Otherwise, open the
datastick in Explorer, and double click on Launch there. Type ‘4’ and then the
[Enter] key to navigate to the Session4 folder. This folder contains the Tux 3
database and model. This is the same as version 2, but has forecasts of productivity,
hours, employment and wages included. Some simple wage equations have already
been estimated, based on a time trend. We’ll later investigate ways to improve those
equations. In this session we will experiment with the effects of changes in wage
growth on prices.
Start G7 as before by typing ‘g7’ and then the [Enter] key. Let’s have a look at
wages by sector. In the G7 command box, type:

sh wage 1 2010

We have used the “show” command with the two optional arguments, the starting
sector and starting year for the display. These options are especially handy if your
databank has a lot of sectors, a lot of years, or both.
Figure 4.1 Wages by Sector

The wage vector is defined as labor compensation (lab) divided by hours worked
(hrsv), so these figures reflect average hourly compensation.

 IWC 2018

 64

4.1 Forecasting Wages with a Time Trend: Estimation
Forecasting a variable using a time trend can sometimes be a good first step to
incorporating equations into a model. They are very stable, and won’t generally
cause problems in your model. However, since they don’t respond to any economic
influences, they are at best a straw man for comparing with more meaningful
equations.
To create a time trend in G7, we use the @cum() function. We have encountered the
@log() function earlier, when calculating the growth rate of GDP (g_gdp):

f lgdp = @log(gdp)
f g_gdp = (lgdp – lgdp[1])*100.

G7 includes many functions, which all begin with the ‘@’ symbol.
The @cum() function in G7 accumulates values of one series x into another series y,
with an optional “spill rate” s. Mathematically, this can be written
 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝑥𝑥𝑡𝑡 − 𝑠𝑠𝑦𝑦𝑡𝑡−1 4.1
or
 𝑦𝑦𝑡𝑡 = (1 − 𝑠𝑠)𝑦𝑦𝑡𝑡−1 + 𝑥𝑥𝑡𝑡 4.2
in G7, this would be written as:

f y = @cum(y,x,s)

The cum’ing starts in the first period defined by “fdates”. Often this function is used
to form a capital stock K from a series of investment expenditures I, with the spill
rate s being the exponential depreciation rate of the stock.
But the function has many other uses! Type the following commands in G7:

fdates 1997 2030
f timet = @cum(timet,1,0)

Here we are accumulating the value of 1 each period and spilling out 0. Now type
the value of time. Can you see how the function works in this case? Forecasting a
variable using a time trend can be as simple as regressing the variable on timet:

lim 1997 2016 2030
ti Agriculture, forestry and fisheries
r wage1 = timet
gr *

 IWC 2018

 65

Figure 4.1 Simple Time Trend Regression

However, it is perhaps more natural to regress the logarithm of the variable on time:
f lwage1 = @log(wage1)
r lwage1 = timet
gr *

Figure 4.2 Log Time Trend Regression

In the regression results shown below, the coefficient on timet is .0409.This can be
interpreted as the average annual exponential growth rate, divided by 100. The
average growth rate of the wage rate in the Agriculture industry was about 4.1
percent over this period.

: 1 Agriculture, forestry & fisheries
 SEE = 0.05 RSQ = 0.9489 RHO = 0.36 Obser = 20 from 1997.000
 SEE+1 = 0.05 RBSQ = 0.9460 DW = 1.29 DoFree = 18 to 2016.000
 MAPE = 2.11
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lwage1 - - - - - - - - - - - - - - - - - 2.23 - - -
 1 intercept 1.80535 1490.7 0.81 19.56 1.00
 2 timet 0.04090 342.2 0.19 1.00 10.50 0.974

Now, let’s clean off our counter, get our frying pan ready, and cook up a regression
file for the wage equations.
Start a new file in the G7 editor with the command:

ed wage.reg

1 Agriculture, forestry & fisheries1 Agriculture, forestry & fisheries
13.21

 9.59

 5.98

2000 2005 2010 2015
 Predicted Actual

1 Agriculture, forestry & fisheries1 Agriculture, forestry & fisheries
 2.62

 2.21

 1.79

2000 2005 2010 2015
 Predicted Actual

 IWC 2018

 66

A new editor screen will appear. Type in a comment on the first line, to identify the
file:

wage.reg - Wage equations.

Next, set up the “fdates” and “limits”. We’ll generate the right hand side variable
(time) to run as far as 2030, to see the effects of extrapolating the regression. The
three dates in the “lim” command mean to estimate the regression from 1997 to
2016, and then to forecast from 2017 to 2030.

fdates 1997 2030
lim 1997 2016 2030

The next step will be to read in the sector titles with the “gtfile” command and set up
the time trend variable. We add 1996 to the time trend variable, which starts at 1 in
1997, so that it will be equal to the year:

gtfile sec9.gtf
f timet = @cum(timet,1,0) + 1996

Next, we will open up three files: a “save” file, a “catch” file and an “equation” (.eqn)
file. The equation file we are seeing for the first time, and it is opened by the
“punch” command. There are three parameters after the filename. The first is the
maximum number of equations to save (it can be more than we have), the second is
the maximum number of right hand side variables, and the third is the last year of
estimation.

save wage.sav
catch wage.cat
punch wage.eqn 9 2 2016

At the bottom of the file, we need to close these files, so let’s go ahead and type those
lines now. All of the main code to estimate the regressions will then go in the
middle, before these lines:

punch off
catch off
save off

Now here is the main code, with explanations, which goes between the two “punch”
commands (you don’t need to type the comments, which are text after and including
the ‘#’ character):

fex timet = timet # bring timet into the databank
do { # start the loop
 gti %1 # assign the title of the regression
 fex lwage%1 = @log(wage%1) # create the log wage, but don’t generate code
 r lwage%1 = timet # perform the regression
 gr * # make a regression plot
 ipch wage %1 a # write into the “equation” (.eqn) file
 id wage%1 = @exp(lwage%1) # generate code to change the solved value
 # to levels
} (1-9) # index of the loop

The “ipch” is a new command. It writes information into the .eqn file about the
estimated values of parameters for the regression, in a format that can be read by
the model.
The complete file should appear as shown below:

 IWC 2018

 67

wage.reg
wage.reg - Wage equations.

fdates 1997 2030
lim 1997 2016 2030
gtfile sec9.gtf

f timet = @cum(timet,1,0) + 1996
save wage.sav
catch wage.cat
punch wage.eqn 9 2 2016

fex timet = timet
do {
 gti %1
 fex lwage%1 = @log(wage%1)
 r lwage%1 = timet
 gr *
 ipch wage %1 a
 id wage%1 = @exp(lwage%1)
} (1-9)

punch off
catch off
save off

If everything looks good, go ahead and run the file in G7 by clicking the Run menu
or using the F9 function key. You can observe the regression parameters (fit,
autocorrelation, regression coefficients, etc.) as well as the regression plot, for each
of the 9 sectors. The output file, used by the model, is wage.eqn. The first few lines
of that file are shown below:
wage.eqn

9 2 2016
wage 1 a 2
 1 2
 0.357478 -79.823944 0.040896
wage 2 a 2
 1 2
 0.782427 -66.177811 0.034768
wage 3 a 2
 1 2
 0.847188 -72.501709 0.038112

The equations we have just estimated are an example of what are called detached
coefficient equations in Interdyme. In contrast to the equations estimated by
Idbuild, which are written directly out in C++ code, the detached coefficient
equations have their parameters written out to an equation (.eqn) file, which is read
by the model. Some programming is necessary to implement the equations in the
model. This has already been done for you in Tux 3. In session 5 we’ll delve into the
estimation of detached coefficient equations in more detail, as they are an important
component of a typical model.

 IWC 2018

 68

4.2 Effects of Wages on Prices
The IO price model enables the analysis of the effects of the change in price in one
sector on the prices of all other sectors, or of the effects of changing components of
value added on prices. An important component of value added is wages. Table 4.1
summarizes the time trend rates of growth from the wage rate equations estimated
in section 4.1, and shows total wages, total value added, and the share of wages in
value added and output for 2016.
Table 4.1 Growth Rates of Wage Rates, and Share of Wages in Value Added
and Output

We’ll create a new alternative scenario that increases all wage rates relative to the
base case, called HighWage.
If you already have a command prompt window open in the \Session4 folder, you’re
ready. If not, click on the launch icon again on the data stick, and type ‘4’. Copy the
3 main input files from Base to HighWage:
Figure 4.3 Copying Fixes Files for HighWage Scenario

Next, we’ll edit the highwage.vfx file with Notepad++.

np highwage.vfx

HighWage.vfx
group All
 1-9

mul -s wage :All
 2016 1.0
 2030 1.2

Estimated
Growth

Rate Wages
Total Value

Added

Wage
Share

(%)

Total
Nominal
Output

Wage
Share

(%)
1 Agriculture, forestry, fishing and hunting 4.1 55,104 180,991 30.4 430,951 12.8
2 Mining and extraction 3.5 64,527 229,314 28.1 328,229 19.7
3 Utilities 3.8 78,423 346,182 22.7 510,288 15.4
4 Construction 3.2 540,577 883,032 61.2 1,529,777 35.3
5 Manufacturing 3.0 906,402 2,054,537 44.1 5,530,858 16.4
6 Trade 2.8 977,817 1,999,270 48.9 3,108,180 31.5
7 Transportation 2.6 333,656 579,266 57.6 1,096,268 30.4
8 Services 3.2 5,212,582 10,490,040 49.7 16,722,400 31.2
9 Government 3.8 1,823,152 1,861,842 97.9 2,827,973 64.5

 Total 9,992,240 18,624,475 53.7 32,084,924 31.1

2016 Values

 IWC 2018

 69

Type the lines in bold above into the file. This fix is an example of a “mul” fix, where
the values of a variable are multiplied by a specified factor. In our example, the
factor is 1.0 in 2016 (no change), and 1.2 by 2030 (20 percent increase). The factors
in the intervening years are interpolated. The first lines of the fix file set up a group
called All, which consists of all sectors 1 to 9. The fix is an example of a group fix
which applies to all sectors of a group. The group name is specified by placing a
colon (‘:’) in front of the group name. The last item to explain is the “-s” option.
Normally a group fix applies to the sum of the elements of a group. With the “-s”
option, it applies the fix to each single sector. Therefore, this fix increases wage
rates in all sectors by 20 percent above the base by 2030.
Now save the fixes file. We’ll run the model as we did in session 1.
Open G7, or switch to it, if it is already running. Pick Model | Run Dyme Model, or
press the F8 function key. Fill in the dialog box as shown below.
Figure 4.4 Run Dialog for High Wage Scenario

Click the OK button. When the Pause window appears, click OK again. Finally,
when the output window showing the Seidel iterations has completed, hit any key to
return to G7. Now you have a new scenario in HighWage.vam and HighWage.bnk.
The following show file, which is on your datastick already, can be used to verify the
ratio of increase of wages by sector, and the resulting increase in prices. What can
you conclude about the differential impacts on output prices. Which sectors’ prices
increased the most, and why?

 IWC 2018

 70

HighWage.sh
vam base a
vam highwage b
fdates 2000 2030
subti Compare Wage Rates
gtfile sec9.gtf
do {
 gti %1
 f ratio = b.wage%1 / a.wage%1
 ty ratio 2016 2030
 gr a.wage%1 b.wage%1 2010 2016 2030
} (1-9)

subti Compare Output Prices
gtfile sec9.gtf
do {
 gti %1
 f ratio = b.outp%1 / a.outp%1
 ty ratio 2016 2030
 gr a.outp%1 b.outp%1 2010 2016 2030
} (1-9)

4.3 Government Receipts and Expenditures
Questions of tax policy, public investment, transfer payments and the overall
savings/investment balance in the economy are intimately related to the structure of
the government accounts. In this session, we start to expand Tux to include
accounts for Federal and State and local governments, modeling the components of
receipts and expenditures to arrive at a measure of total government saving or
deficit. Table 4.2 summarizes the main variables comprising federal receipts and
expenditures for the U.S. from 2010 to 2016. The names in the Variable column will
be the variable names in the databank.

Table 4.2 Federal Government Receipts and Expenditures

As we did earlier in Session 2, we’ll build a .reg file called fedgov.reg to forecast
these components, either by assumption, or by relating them to other variables in
the model by ratio or regression. This file is shown below. Much of the workings of

Title Variable 2010 2011 2012 2013 2014 2015 2016
Current receipts gfr 2,443 2,574 2,699 3,138 3,291 3,441 3,452
 Current tax receipts gfrt 1,353 1,554 1,661 1,824 1,995 2,127 2,100
 Personal current taxes gfrtp 942 1,129 1,165 1,302 1,403 1,529 1,541
 Taxes on production and imports gfrti 97 109 115 125 135 140 137
 Taxes on corporate income gfrtc 299 299 363 378 437 437 401
 Taxes from the rest of the world gfrtr 16 17 18 19 20 21 21
 Contributions for government social insurance gfrcsi 971 904 938 1,091 1,141 1,193 1,230
 Income receipts on assets gfra 55 56 53 163 75 49 47
 Current transfer receipts gfrct 68 67 56 71 88 77 78
 Current surplus of government enterprises gfrsurp -3 -7 -9 -11 -8 -5 -4
Current expenditures gfe 3,772 3,818 3,789 3,782 3,901 4,028 4,149
 Consumption expenditures gfec 1,004 1,006 1,008 961 954 960 965
 Current transfer payments gfet 2,333 2,327 2,301 2,346 2,449 2,573 2,648
 Interest payments gfeint 381 426 423 416 441 438 475
 Subsidies gfesub 54 60 58 59 58 57 61
 Net Federal Government saving gfsav -1,329 -1,244 -1,090 -644 -610 -587 -697

Made using Compare and fedgov.stb with hist.vam

 IWC 2018

 71

this .reg file should be familiar from the earlier discussion of pi.reg. However, there
are a few new features.
We introduce some lines of C++ code directly into heart.cpp in the fedgovf() function
with the commands:

cc // MacFix macro:
cc #define MacFix(x) depend=x[t]; x.modify(depend);

The “cc” command means to pass the code verbatim into the destination .cpp file.
The MacFix macro definition here enables us to specify where a macrofix can be
applied to a variable. For example, several lines below we encounter:

Personal taxes = gfrtp
fex gfrtprat = gfrtp / pi
cc MacFix(gfrtprat);
id gfrtp = gfrtprat * pi

You should make yourself familiar with the pattern of the three lines of code. The
first, which is an “fex” statement, creates an exogenous variable, which is the ratio of
personal federal taxes to personal income. The second line, with the MacFix() macro,
is a C++ statement where fixes to gfrtprat will be applied. Finally, the “id” statement
calculates personal federal taxes gfrtp from the assumed tax rate, and the value of
personal income pi.

fedgov.reg

fedgov.reg - Develop the components of federal government revenue and
expenditures. Illustrate the federal government identities and the use
of macrofixes

ba macro a
vam hist b

fdates 1997 2016
tdates 1997 2016
gdates 1997 2016

f pi = pi
f topinc = b.topinc
f capinc = b.capinc

set up time trend variable (= to year)
f timet = @cum(timet,1,0) + 1996

catch fedgov.cat
save fedgov.sav
cc // MacFix macro:
cc #define MacFix(x) depend=x[t]; x.modify(depend);

Personal taxes = gfrtp
fex gfrtprat = gfrtp / pi
cc MacFix(gfrtprat);
id gfrtp = gfrtprat * pi

Indirect taxes = gfrti
fex gfrtirat = gfrti / (topinc/1000.)
cc MacFix(gfrtirat);
id gfrti = gfrtirat * (topinc/1000.)

Corporate taxes = gfrtc
fex gfrtcrat = gfrtc / (capinc/1000.)
cc MacFix(gfrtcrat);
id gfrtc = gfrtcrat * (capinc/1000.)

 IWC 2018

 72

Tax receipts from rest of world = gfrtr
ti Tax receipts from rest of world
r gfrtr = timet
gr *

Total federal taxes = gfrt
id gfrt = gfrtp + gfrti + gfrtc + gfrtr

Contributions for social insurance = gfrcsi
fex gfrcsirat = gfrcsi/pi
cc MacFix(gfrcsirat);
id gfrcsi = gfrcsirat * pi

Income receipts from assets = gfra (exogenous)
cc MacFix(gfra);

Current transfer receipts = gfrct
ti Current transfer receipts
r gfrct = timet
gr *

Current surplus of government enterprises = gfrsurp (exogenous)
cc MacFix(gfrsurp);

Total receipts = gfr
id gfr = gfrt + gfrcsi + gfra + gfrct + gfrsurp

Expenditures

Consumption expenditures = gfec (exogenous)
cc MacFix(gfec);

Current transfer payments = gfet (time trend)
ti Current transfer payments
r gfet = timet
gr *

Interest payments = gfeint (time trend, but could be made a function of debt held by
the public times an average interest rate paid on that debt.
ti Interest payments
r gfeint = timet
gr *

Subsidies = gfesub (time trend)
ti Subsidies
r gfesub = timet
gr *

id gfe = gfec + gfet + gfeint + gfesub

Net federal government saving
id gfsav = gfr - gfe

save off
catch off

There is a similar .reg file slgov.reg for State and local government, which is not
shown here, to save space.
By running each of these files in G7, we create fedgov.sav and slgov.sav. They can
then be added to the master file. The new version of this file is shown below:
master (for Session 4)

Master File for Tux9: Model 3
iadd pseudo.sav
iadd RealGDP.sav
iadd pi.sav

 IWC 2018

 73

iadd fedgov.sav
iadd slgov.sav
iadd account.sav
iadd vfR.sav
isvector gpfi
iadd gpfi.sav # fixed investment
isvector clear
#isv prdv
#iadd prd.sav # labor productivity
#isv clear
isv yhrv
iadd yhr.sav # average hours worked
isv clear
ba empwag
isv empv, yhrv, prdv, hrsv, lab
iadd empwag.sav
isv clear
ba exim
iadd exim.sav
iadd Fixes.sav
end

You can run IdBuild at the command prompt by typing:
idbuild master

The current list of macrovariables in hist.bnk can now be viewed in the file
TSeries.inc. There should be well over 120 macrovariables at this point. The
exogenous macrovariables, which should be fixed if you want them to change, are
listed in the file Run.xog. For each exogenous macrovariable, there is a line of the
form

add <name>.xog

where ‘name’ is the name of the macrovariable. We’ll cover the use of run.xog
presently, but for now it is a handy way of getting a list of the exogenous
macrovariables.
If you don’t fix them, they will remain flat at the last known value, currently 2016.
Two new stub (.stb) files have been created for Tux 3 to look at the government
accounts. They are named fedgov.stb and slgov.stb.

 IWC 2018

 74

SUGGESTED ASSIGNMENTS AND PROJECTS
No one is born a great cook, one learns by doing.

At this point, we take a pause, reflect on what we have learned, and play with some
new recipes. The assignments below have been designed to be doable in less than an
hour. Projects are more extensive, and probably require guidance and
communication with a more experienced chef. However, from what you have learned
so far, you should be able to see the way through a more extensive project, or at least
understand better what you still need to learn to get there.
Although this is not a session per se, a folder named Session5 has been set up on
your datastick. It is essentially a copy of Session4 with the improvements in that
session included. You can use this space to experiment with the assignments and
projects described below.

Create Aggregate Price Ratios

1. Create a .reg file named Prices.reg. Make the first line a comment describing
the purpose of the file.

2. Include the statements:
ba hist
fdates 1997 2016

3. Use the “save” command to open up Prices.sav for writing. Put a “save off”
command at the bottom of the file.

4. Include statements to calculate cP, vfP, viP, gP, xP, mP and gdpP. For
example “f cP=c/cR”. Note that for technical reasons, the nominal value of
fixed investment is vfix. So, the command for vfP is “f vfP = vfix/vfR”

5. Run the Prices.reg file in G7. Look at Prices.sav to make sure it looks right.
6. Add a line in the master file “iadd Prices.sav”, just after “iadd Account.sav”.
7. Run “idbuild master”. Check tseries.inc to see if your new variables got

included. Open up G7, assign the hist bank with “ba hist”, and type the
values of your new price variables to check them.

8. Open up heart.cpp in the Notepad++ editor (“np heart.cpp”) and find the
Pricesf() function. Check the code to see if it is correct.

9. In model.cpp, add the line “Pricesf();” just after “Accountf(); Don’t forget the
semicolon (‘;’) at the end of the line!

10. Save the model.cpp file, and compile and link with “make”.
11. Now, run the base simulation with the new model.
12. When it has finished, start G7 assign the scenario with “vam base”, and type

the values of the price deflators you have added to the model. (i.e., “ty cP
2005 2030”, for example)

 IWC 2018

 75

Estimate Personal Consumption Equations
1. Create a .reg file called pceio.reg. Make the first line commenting the purpose

of the file.
2. Include the statements:

vam hist a
fdates 1997 2016
lim 1999 2016

3. Add a line to set the 9-sector titles file with “gtfile sec9.gtf”.
4. Use the “save” command to open up pceio.sav for writing. Put a “save off

command and the bottom of the file.
5. Create a Real Disposable Income variable called pidisR using the nominal

variable and the cP variable created in the previous exercise. “f pidisR =
pidis/cP”.

6. Create a variable measuring the change in pidisR from one year to the next
using a lag (pidisR[1]). Call this variable dipis. (“f dipis = pidisR – pidisR[1]”).

7. Create a do loop that excludes sector four, as there is no pceio data for that
sector. Inside the do loop, regress pceio against pidisR and dipis. Run the file.

8. Add the following lines to the master file, after iadd prices.sav.
isvector pceio
iadd pceio.sav
isvector clear

9. Run “idbuild master”. Open up G7, assign the hist bank with “ba hist” and
type out your new variables to make sure they are included.

10. In model.cpp, pceio is currently shared out from the macrovariable cR, which
is determined in the Accountant (Accountf()). Find the line:
pceio = cR[t]*1000.*pceioc;

Comment it out with ‘//’ in front of it. Replace it with your new function, and
then we add a line to control it to a variable called pceiosum, which is
essentially cR*1000:
pceiof();
control(pceio,pceiosum);

11. Save the model.cpp file, and compile and link with “make”.
12. Run the base case again, and look at your resulting forecast of pceio in G7.

Estimate “Markup” Equations for Gross Operating Surplus
Total value added is the sum of labor compensation (lab), gross operating surplus
(gos) and taxes on production and imports less subsidies (topi). We have already
experimented with the simple time trend wages equations which are used in the
model to determine lab. Gross operating surplus is composed of many different
types of income, including profits, proprietors income, rental income, net interest,
depreciation (capital consumption)

1. Create a .reg file named gos.reg. Make the first line a comment describing
the purpose of the file.

2. Include the statements:
vam hist
fdates 1997 2016
lim 1997 2016

 IWC 2018

 76

3. Add a line to set the 9-sector titles file with “gtfile sec9.gtf”.
4. Add a line to calculate a time trend.
5. Use the “save” command to open up gos.sav for writing. Put a “save off”

command at the bottom of the file.
6. Let’s approach this problem incrementally. Pick one sector, say

Manufacturing (5), and estimate a time trend regression:
gti 5
r gos5 = timet
gr *

7. Look at the plot. How well does the time trend describe this series? You may
notice that the gos5 series is cyclical, with downturns in 2001 and 2009,
which were both recessions in the U.S.

8. A cyclical indicator, which we may try in this regression, is the
unemployment rate un. Modify the regression statement to add the un
variable:
r gos5 = timet, un

9. This variable does not improve the fit very much, however.
10. Another variable is the first difference of real GDP. Just after the “save”

command, add the following statement:
f delgdpR = gdpR – gdpR[1]

11. Now revise the “lim” statement near the top of the file to “lim 2000 2016”.
(We’ll be introducing some lagged variables, and so need to start the
regression later.)

12. Add delgdpR and delgdpR[1] to the regression:
r gos5 = timet, un, delgdpR, delgdpR[1]

13. Now experiment with setting up a do loop to estimate this equation for gos for
all sectors.

14. Follow the typical routine for incorporating in the model. Run gos.reg.
Inspect gos.sav. Put the lines:
isvector gos
iadd gos.sav
isvector clear

in the master file. Run “idbuild master”.
15. Open up model.cpp in the Notepad++ editor (“np model.cpp”). Find the line:

gos = ebemul(gosc,out);

Comment this out with ‘//’, and replace with the line:
gosf(gos);

16. Compile the model with “make” and run the base case again. Check out the
results for gos in G7.

Run a Tax Cut Scenario
Since we have incorporated fedgov.reg and slgov.reg in the model, there are
variables that relate federal and state and local personal taxes to personal income.
Here are the relevant lines from those files:
fedgov.reg (extract)

fex gfrtprat = gfrtp / pi
cc MacFix(gfrtprat);
id gfrtp = gfrtprat * pi

slgov.reg (extract)

 IWC 2018

 77

fex gsrtprat = gsrtp / pi
cc MacFix(gsrtprat);
id gsrtp = gsrtprat * pi

The variables gfrtprat and gsrtprat are the ratios of taxes paid to federal and state
and local governments to personal income. They are exogenous to the model. At this
point, we have not made any special assumptions about them, so they remain flat in
the forecast. You can verify this by typing them out in G7:

vam base a
ty a.gfrtprat 2010 2030
ty a.gsrtprat

Using what you have learned about creating alternative scenarios from sections 1.7
and 4.2, create an alternative scenario called TaxCut that reduces the federal tax
ratio gfrtprat relative to the base case. The steps are roughly:

1. make copies of base.mfx, base.vfx and base.xg to taxcut.mfx, taxcut.vfx and
taxcut.xg.

2. Add lines to base.mfx to specify a fix for gfrtprat.
3. Run the Taxcut scenario in G7.
4. Open the Taxcut scenario along with the base:

vam base a
vam taxcut b

5. Create a “show” (.sh) file taxcut.sh to compare the values of several important
variables between the base and taxcut cases. For example, the following
lines compare the tax rate variable (gfrtprat), and the value of real personal
consumption (cR):
ti Ratio of Federal Taxes to Personal Income
gr a.gfrtprat b.gfrtprat 2010 2016 2030
ti Personal Consumption
gr a.cR b.cR

6. Think of some other variables to compare, and add them to the show file. Do
the variables change in the expected direction? Do some variables not
change? If so, see if you can figure out why not.

 IWC 2018

 78

SESSION 6. LABOR PRODUCTIVITY
A cookbook is only as good as its poorest recipe.

6.1 Background
Labor productivity is one of the most important, yet most poorly understood features
of the economy. Over the last 50 years, labor productivity in the U.S. has
experienced several significant slowdowns and speeding up periods. How can we
explain the changes in growth rates? What is the likely growth rate in the near
future, for the next 10 or 20 years? Answering this question has implications for the
expected standard of living for citizens, as well as the ability to pay for government
programs, and to pay off accrued government debt.

Table 6.1 GDP, Productivity & Labor Force, in the U.S.: 1977-2016

Table 6.1 shows growth rates for selected intervals between 1977 and 2016 of some
important statistics, including a measure of aggregate private sector labor
productivity. If the unemployment rate were constant, the labor force was always
the same share of population, and the government was a constant share of GDP,
then the growth of productivity would be a good measure of the growth in living
standards. Average growth in productivity over the whole period is about 1.72
percent. With this growth rate, we find a doubling every 40.2 years.12 The late
1990s, tagged as the “New Economy”, averaged a 2.6 percent rate of growth, which if
maintained, would yield a doubling in 26.7 years. At the tepid rate of growth from
2011-2016 (.046 percent), doubling would take 150.7 years!
Table 6.1 also sheds light on the relationship between private labor productivity
growth and real private GDP growth. Again, with the simplifying assumptions of
constant unemployment rate and constant government share, then real GDP growth

12 To find the doubling time T for any growth rate r expressed as a percent, use the formula T =
ln(2)/(r/100). Since ln(2)*100=69.3, a rough rule of thumb is to divide 70 by the growth rate to obtain
the approximate doubling period.

77-87 87-95 95-01 01-11 11-16 77-16
 Growth Rates
 Real GDP 3.15 2.80 3.67 1.69 2.14 2.65
 Private sector real GDP 3.56 3.15 4.13 1.78 2.44 2.96
 Aggregate private productivity 1.66 1.58 2.60 1.99 0.46 1.72
 Labor force 1.91 1.23 1.38 0.66 0.71 1.22
 Total growth of labor force and productivity 3.57 2.82 3.98 2.65 1.17 2.93
 Averages
 Average unemployment rate 7.36 6.17 4.77 6.36 6.79 6.38
 Average Govt. value added share of GDP 19.8% 17.3% 14.4% 12.9% 12.0% 15.7%

 IWC 2018

 79

should be approximately equal to the growth rate of the labor force plus the growth
rate of productivity.13
Figure 6.1 shows the aggregate growth rate in a continuous graph from 1977 to
201614. The rapid productivity growth centering on the year 2000, and the slow
growth after 2011 are both readily apparent from this graph.
Figure 6.1 Aggregate Labor Productivity

The measure of aggregate private sector labor productivity we’ve shown so far is
calculated as private real GDP (GDP less government value added) divided by
private hours worked. In an interindustry model such as Tux, we model sectoral
labor productivity, which is calculated as real output divided by hours worked.
Table 6.2 shows sectoral productivity growth rates at the 9-sector level, for the
same periods as in table 6.1.

Table 6.2 Sectoral Productivity Growth in the U.S.: 1977-2016

The sectoral growth rates of course show a lot of variation, both across time
periods and across sectors, even at this fairly aggregate level of 9 sectors. The
construction sector has recorded an average of -0.48 growth over the period 1977

13 In fact, the growth rates are not extremely close, due to changes in the unemployment rate, the
government share of value added, changes in average hours worked, and changes in the spread
between the industry and household measures of employment.
14 The data in the Tux session directories begins in 1997. However, the datastick includes 3 historical
folders at different sector levels: hist9, hist17 and hist47. These folders include IO and some other data
back to 1967.

Aggregate Private Sector ProductivityAggregate Private Sector Productivity
 0.06

 0.05

 0.03

1980 1985 1990 1995 2000 2005 2010 2015
 prodpriv

77-87 87-95 95-01 01-11 11-16 77-16
 Agriculture, forestry & fisheries 3.74 2.57 3.34 1.27 1.56 2.52
 Mining and extraction 1.37 2.19 3.20 -1.98 4.33 1.34
 Electricity, gas & water -0.76 1.12 7.86 -2.49 0.50 0.67
 Construction 0.09 -0.96 -0.45 -1.41 0.97 -0.48
 Manufacturing 1.25 2.02 3.19 3.10 0.91 2.14
 Trade 1.72 2.79 3.46 2.45 1.55 2.37
 Transportation 0.66 1.23 0.65 1.49 -1.10 0.76
 Services 0.78 0.61 2.15 1.17 0.43 1.01
 Government 0.95 1.87 9.34 0.90 -0.20 2.27

 IWC 2018

 80

to 2016! Agriculture, Manufacturing, Trade and Government have fairly high
growth rates.15 Growth in the most recent period, 2011 to 2016 has been low, but
several sectors, notably Mining and extraction, have experienced an uptick in
productivity. The productivity growth of Electricity, gas and water has been low
on average, but quite volatile.

6.2 Forecasting Productivity with a Time Trend
These productivity explorations will be done in the folder \Session6 on your
datastick. (Just type ‘6’, then start G7.)
Let’s first look at fitting productivity with a time trend. We’ll try a regression
similar to that used for the wage rate. For the recipes in this session, we’ll give
each version a letter indicator. The first will be ‘a’.
In this first model, we simply regress the log of productivity on time. In the Tux
model, the predicted value from this regression will be converted back to levels.
The productivity from this equation will then be used in conjunction with the
output forecast to forecast hours worked by industry.
Note again the use of the “(gtf)ile” and “(gti)tle” commands to use titles from a
titles (.gtf) file, the use of the catch command to capture output to a catch (.cat)
file, and the saving of the equation results to a save (.sav) file. The “punch”
command is used to write information about each equation to an equation (.eqn)
file, which can be read in by the model as an Equation object. The type ‘a’, is
indicated in the “ipch” command, which actually writes the parameters for each
equation to the .eqn file. This type indicator is used in the model to branch to
different code depending on the structure and variables in the equation. The file
LabProdA.reg contains the G7 commands to estimate these regressions and
create the .eqn file.

LabProdA.reg
LabProdA.reg - Regressions for labor productivity by sector, using detached
coefficients with rho-adjustment. This is a simple log on time trend
model, so the time coefficient is the estimate of the exponential growth
rate.
Sectors are 1-9

fdates 1997 2030
#lim 1997 2016 2030
lim 1997 2016 2016
gtfile sec9.gtf
f timet = @cum(timet,1,0) + 1996
save LabProdA.sav
catch LabProdA.cat
punch LabProdA.eqn 9 2 2016
do {
 gti %1
 f lprdv%1 = @log(prdv%1)

15 Government output in the U.S. NIPA is measured as real labor compensation and depreciation of
capital.

 IWC 2018

 81

 r lprdv%1 = timet
 gr *
 ipch prd %1 a
} (1-9)

Results for Manufacturing
: 5 Manufacturing
 SEE = 0.04 RSQ = 0.9309 RHO = 0.85 Obser = 20 from 1997.000
 SEE+1 = 0.02 RBSQ = 0.9271 DW = 0.30 DoFree = 18 to 2016.000
 MAPE = 0.69
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lprdv5 - - - - - - - - - - - - - - - - - 5.17 - - -
 1 intercept -46.44230 245.2 -8.99 14.48 1.00
 2 timet 0.02572 280.5 9.99 1.00 2006.50 0.965

Manufacturing is one of the easier sectors to fit, with an 𝑅𝑅2 of .9309, and an
exponential trend of 2.57 percent (.02572 coefficient). (In the figure below, the
actual and predicted values have been converted back to levels.) Note how labor
productivity grew quickly in the expansion up to 2007, and then declined during the
first years of the crisis. After a jump in 2010, growth has been slow from 2011 to
2016.
Figure 6.2 Regression Fit for Manufacturing

One of the more difficult sectors to fit in this period is Mining and quarrying, with
an 𝑅𝑅2 of .1051. Figure 6.3 shows that the productivity in this sector shows no
noticeable trend, and is highly volatile. The trend is a small negative value (-0,45
percent).

Results for Mining and Quarrying
: 2 Mining and quarrying
 SEE = 0.08 RSQ = 0.1051 RHO = 0.81 Obser = 20 from 1997.000
 SEE+1 = 0.05 RBSQ = 0.0554 DW = 0.37 DoFree = 18 to 2016.000
 MAPE = 1.19
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lprdv2 - - - - - - - - - - - - - - - - - 5.59 - - -
 1 intercept 14.60864 14.4 2.62 1.12 1.00
 2 timet -0.00450 5.7 -1.62 1.00 2006.50 -0.324

5 Manufacturing5 Manufacturing
224.2

177.2

130.2

2000 2005 2010 2015
 pred5 prdv5

 IWC 2018

 82

Figure 6.2 Regression Fit for Mining and Quarrying

Table 6.3 summarizes the results for 𝑅𝑅2 and the estimated time trend for each of the
9 sectors. Two sectors, Mining and extraction, and Electricity, gas and water, have a
very poor fit, and no significant trend. However, these two have a small share of
total employment in 2016, as shown in Table 6.4. They also have the highest levels of
productivity. The largest shares of employment are in Services (52.3%), Trade
(14.4%) and Government (14.2%). The Manufacturing share (8%) has declined from
a level of 20% in 1977, due partly to rapid productivity growth, and partly to a
steady increase in the import share of Manufacturing.
Table 6.3 Regression Summary for Time Trend Model ‘a’, 9 Sectors

2 Mining and quarrying2 Mining and quarrying
308.1

272.7

237.3

2000 2005 2010 2015
 pred2 prdv2

Title R-Squared Trend
1 Agriculture, forestry & fisheries 0.721 1.33
2 Mining and extraction 0.105 -0.45
3 Electricity, gas & water 0.006 -0.11
4 Construction 0.703 -0.85
5 Manufacturing 0.931 2.57
6 Trade 0.900 2.21
7 Transportation 0.638 0.82
8 Services 0.885 1.16
9 Government 0.807 0.77

 IWC 2018

 83

Table 6.4 Employment and Labor Summary, 2016

6.3 Incorporating Pro-Cyclical Labor Productivity Growth
The next model (‘b’) incorporates the effect of changes in output, in addition to the
exponential time trend. The simplest version of such a model would be:
 ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗) = b0 + b1𝑡𝑡 + b2(ln�𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗,𝑡𝑡� − ln�𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗,𝑡𝑡−1�) 6.1

The version we present here incorporates two minor innovations to this basic setup.
First, we make use of the concept of peak output. This is the previous peak value of
output, with an option spill rate or depreciation rate. In G7, this is implemented
with the @peak() function. Figure 6.3 compares actual output in the Construction
sector with peak output, first with a zero spill rate (left), and then using a 3 percent
spill rate (right). The concept of peak output is an attempt to measure potential
capacity in place. The spill rate roughly models the depreciation of this capacity.
Figure 6.3 Illustration of the @peak() Function

The second feature is to separate positive changes from peak output from negative
changes. The reasoning behind this choice is that the pro-cyclical impacts of output
changes on productivity may be different when output is increasing than when it is
decreasing. The positive changes are in the variable Qup (which is zero otherwise),
and the negative changes are in Qdown. Equation 6.2 is the estimated equation.

Title Employment
Employment

Share (%) 2016

Productivity
(2009$/hr)

2016

Labor Cost
Share (%)

2016
1 Agriculture, forestry & fisheries 2,298 1.5 90.6 12.8
2 Mining and extraction 633 0.4 294.8 19.7
3 Electricity, gas & water 555 0.4 463.8 15.4
4 Construction 8,538 5.4 76.4 35.3
5 Manufacturing 12,634 8.0 210.7 16.4
6 Trade 22,827 14.4 80.5 31.5
7 Transportation 5,393 3.4 98.1 30.4
8 Services 82,689 52.3 110.7 31.2
9 Government 22,435 14.2 70.1 64.5

ConstructionConstruction
Zero Spill Rate

1556606

1173507

790408

1970 1980 1990 2000 2010
 peakq4 out4

ConstructionConstruction
3 Percent Spill Rate

1556606

1173507

790408

1970 1980 1990 2000 2010
 peakq4 out4

 IWC 2018

 84

 ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) = b0 + b1𝑡𝑡 + b2𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗 + b3𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑗𝑗𝑗𝑗 6.2

where:
 𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗 = ln (𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗𝑗𝑗)− ln (𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑗𝑗,𝑡𝑡−1), 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗𝑗𝑗 ≥ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑗𝑗,𝑡𝑡−1 ,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗 = ln (𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗𝑗𝑗)− ln (𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑗𝑗,𝑡𝑡−1), 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗𝑗𝑗 < 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑗𝑗,𝑡𝑡−1 ,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0
6.3

The regression file for equation type ‘b’ is LabProdB.reg. The .reg file for each
individual sector, QupQdown.reg is shown just below this.
LabProdB.reg
LabProdB.reg - Estimate the labor productivity equations with procyclical
output effect for the Tux 9 model.

vam hist a
f timet = @cum(timet,1,0) + 1996
str ENDDATE = "2016"
fdates 1997 %s(ENDDATE)
gdates 1998 %s(ENDDATE)
tdates 1997 %s(ENDDATE)
lim 1998 %s(ENDDATE)

punch Labprod.eqn 9 7 %s(ENDDATE)
catch Labprod.cat
add QupQdown.reg 1 Agriculture, forestry & fisheries
add QupQdown.reg 2 Mining and quarrying
add QupQdown.reg 3 Electricity, gas & water
add QupQdown.reg 4 Construction
add QupQdown.reg 5 Manufacturing
add QupQdown.reg 6 Trade
add QupQdown.reg 7 Transportation
add QupQdown.reg 8 Services & other
add QupQdown.reg 9 Government

catch off
save off
punch off

QupQdown.reg
QupQdown.reg - This regresses labor productivity on two time trends and
measures of peak output (Qup and Qdown).

ti %1 %2
f lout = @log(out%1)
f qpeak = @peak(qpeak,out%1,0.3)
f lqpeak = @log(qpeak)

f qup = lout - lqpeak[1]
f qup = @zero(qup) # Replaces all missing observation signs in 'qup' with true zeroes
f nqdown = -1.0 * qup # Returns negative of qup
f down = @pos(nqdown) # Returns nqdown if nqdown > 0, otherwise 0.
f qdown%1 = -1.0 * down # Returns negative of down
f qup%1 = @pos(qup) # Returns qup if qup > 0, otherwise 0.
f lprod%1 = @log(prdv%1) # Log of prd (productivity)

r lprod%1 = timet, qup%1, qdown%1
ipch prdv %1 b
subti Graph in logs
gr *

 IWC 2018

 85

Figure 6.4 compares the fitted values from equation ‘b’ (green, ‘X’ markers) with
equation ‘a’ (red, ‘+’) and the actual historical values (blue, squares), for 4 sectors.
The Qup and Qdown terms help to explain part of the cyclical pattern of labor
productivity, though certainly not all of it. In Mining and quarrying, the equation
actually moves in the wrong direction in 2009.

Figure 6.4 Comparison of Fits (‘b’ vs. ‘a’)

Regression results are compared for two sectors below. Although type ‘b’ seems to
follow the patterns in Agriculture better, the fit is not much different,
Comparison of Regression Results for Agriculture
Type ‘a’
: 1 Agriculture, forestry & fisheries
 SEE = 0.05 RSQ = 0.7212 RHO = 0.55 Obser = 20 from 1997.000
 SEE+1 = 0.04 RBSQ = 0.7057 DW = 0.90 DoFree = 18 to 2016.000
 MAPE = 0.86
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lprdv1 - - - - - - - - - - - - - - - - - 4.40 - - -
 1 intercept -22.27417 67.4 -5.06 3.59 1.00
 2 timet 0.01330 89.4 6.06 1.00 2006.50 0.849

Type ‘b’
: 1 Agriculture
 SEE = 0.04 RSQ = 0.7123 RHO = 0.60 Obser = 19 from 1998.000
 SEE+1 = 0.04 RBSQ = 0.6548 DW = 0.80 DoFree = 15 to 2016.000
 MAPE = 0.77
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta

1 Agriculture, forestry & fisheries1 Agriculture, forestry & fisheries
Compare fit of 'a' vs. 'b'

 94.2

 82.9

 71.5

2000 2005 2010 2015
 a.preda1 c.prdv1 b.predb1

2 Mining and quarrying2 Mining and quarrying
Compare fit of 'a' vs. 'b'

308.1

272.7

237.3

2000 2005 2010 2015
 a.preda2 c.prdv2 b.predb2

4 Construction4 Construction
Compare fit of 'a' vs. 'b'

 86.8

 79.8

 72.8

2000 2005 2010 2015
 a.preda4 c.prdv4 b.predb4

7 Transportation7 Transportation
Compare fit of 'a' vs. 'b'

106.0

 97.7

 89.4

2000 2005 2010 2015
 a.preda7 c.prdv7 b.predb7

 IWC 2018

 86

 0 lprod1 - - - - - - - - - - - - - - - - - 4.41 - - -
 1 intercept -20.05855 48.9 -4.54 3.48 1.00
 2 timet 0.01219 67.5 5.54 1.13 2007.00 0.816
 3 qup1 0.38347 0.8 0.00 1.04 0.02 0.088
 4 qdown1 1.29691 1.9 -0.00 1.00 -0.00 0.132

On the other hand the fit in the construction industry improved from type ‘a’ to type
‘b’, even adjusted for degrees of freedom (𝑅𝑅�2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅).
Comparison of Regression Results for Construction
Type ‘a’
: 4 Construction
 SEE = 0.03 RSQ = 0.7033 RHO = 0.69 Obser = 20 from 1997.000
 SEE+1 = 0.02 RBSQ = 0.6868 DW = 0.62 DoFree = 18 to 2016.000
 MAPE = 0.60
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lprdv4 - - - - - - - - - - - - - - - - - 4.37 - - -
 1 intercept 21.41918 117.7 4.90 3.37 1.00
 2 timet -0.00850 83.6 -3.90 1.00 2006.50 -0.839

Type ‘b’
: 4 Construction
 SEE = 0.03 RSQ = 0.7854 RHO = 0.56 Obser = 19 from 1998.000
 SEE+1 = 0.02 RBSQ = 0.7424 DW = 0.88 DoFree = 15 to 2016.000
 MAPE = 0.57
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 lprod4 - - - - - - - - - - - - - - - - - 4.37 - - -
 1 intercept 22.14007 134.3 5.07 4.66 1.00
 2 timet -0.00886 97.1 -4.07 1.36 2007.00 -0.826
 3 qup4 0.37407 2.5 0.00 1.07 0.02 0.140
 4 qdown4 0.26567 3.6 -0.00 1.00 -0.02 0.169

6.4 Production Function Based Productivity Equation
In many of the most commonly used production functions, capital and labor are
substitutable, so that capital can be increased in exchange for a reduction in
labor input, given the same level of output. Fundamental to the understanding of
production analysis is the Cobb-Douglas production function, generally written
as

 𝑄𝑄𝑡𝑡 = A𝑡𝑡𝐾𝐾𝑡𝑡
𝛼𝛼𝐾𝐾𝐿𝐿𝑡𝑡

𝛼𝛼𝐿𝐿 6.4

where Q is output
 K is capital input
 L is labor input.
If this function satisfies constant returns to scale, then

 𝛼𝛼𝐾𝐾 + 𝛼𝛼𝐿𝐿 = 1 6.5
Taking logarithms of both sides of 6.4:

 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = lnA𝑡𝑡 + 𝛼𝛼𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝛼𝛼𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 6.6

 IWC 2018

 87

Taking advantage of 6.5, this can be rearranged as

ln
Qt

Lt
= lnAt + αKln

Kt

Lt

6.7

We will add the logarithm of capital over labor term to the equation, and call this
version ‘c’. The estimated equation is then:

 ln (𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗) = b0 + b1𝑡𝑡 + b2𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗 + b3𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗𝑗𝑗 + b3
𝐾𝐾𝑗𝑗𝑗𝑗
𝐿𝐿𝑗𝑗𝑗𝑗

 6.8

This equation can be interpreted as the labor productivity conditions arising out
of a simple Cobb-Douglas production function, with the ‘A’ term expanded to
include a time trend and the pro-cyclical output response. The fits of this version
are slightly better than version ‘b’ for some sectors, and considerably better for
others. Figure 6.5 compares the fits of these two versions with the actual for 4
selected sectors. In these graphs, the blue line (square markers) is actual labor
productivity, the red line (‘+’s) is version ‘c’, and the green dotted line (‘X’s) is the
fit for version ‘b’.

Figure 6.5 Comparison of Fits (‘c’ vs. ‘b’)

2 Mining and quarrying2 Mining and quarrying
Compare fit of 'b' vs 'c'

309.1

273.2

237.3

2000 2005 2010 2015
 c.predc2 d.prdv2 b.predb2

3 Electricity, gas & water3 Electricity, gas & water
Compare fit of 'b' vs 'c'

 580

 497

 414

2000 2005 2010 2015
 c.predc3 d.prdv3 b.predb3

4 Construction4 Construction
Compare fit of 'b' vs 'c'

 86.8

 79.8

 72.8

2000 2005 2010 2015
 c.predc4 d.prdv4 b.predb4

6 Trade6 Trade
Compare fit of 'b' vs 'c'

 84.2

 69.2

 54.1

2000 2005 2010 2015
 c.predc6 d.prdv6 b.predb6

 IWC 2018

 88

Table 6.5 compares RBSQ for the two versions.

Table 6.5 Comparison of Fit for Models ‘b’ and ‘c’

Title Model 'b' Model 'c'
1 Agriculture, forestry & fisheries 0.6548 0.6691
2 Mining and extraction 0.1541 0.8735
3 Electricity, gas & water 0.0089 0.5872
4 Construction 0.7424 0.7982
5 Manufacturing 0.9154 0.9495
6 Trade 0.8901 0.9753
7 Transportation 0.6293 0.8546
8 Services 0.8785 0.9591
9 Government 0.7385 N/A

R-bar Squared

	Session 1. Kitchen Tools
	1.1 Getting Started and Viewing Data
	1.2 Calculations in G7
	1.3 Databanks in G7
	1.4 The Tux Model Database
	1.5 What Is The Tux Model?
	1.6 Running the Tux Model
	1.7 Making an Alternate Scenario
	1.8 Where to Find More Information

	Session 2. Macro Equations, Making Tables
	2.1 Macroeconomic Equations and Identities
	2.2 Background on Personal Income
	2.3 Regression Files in G7
	2.4 The Save File
	2.5 The IdBuild Program
	2.6 Trying it Out
	2.7 The Purpose of “f”, “fex” and “id” Statements
	2.8 Making Tables of Results

	Session 3. Estimation of Sectoral Equations
	3.1 Inventory of Ingredients
	3.2 Adding Some Spice: Investment Equations
	3.3 A Peak Into the Tux Model
	3.4 Putting the New Equations into the Model
	3.5 Tasting (Testing) the New Equations
	3.6 The IO Table in Constant Prices
	3.6 The Price Solution

	Session 4. Wages and Prices, Government Accounts
	4.1 Forecasting Wages with a Time Trend: Estimation
	4.2 Effects of Wages on Prices
	4.3 Government Receipts and Expenditures

	Suggested Assignments and Projects
	Session 6. Labor Productivity
	6.1 Background
	6.2 Forecasting Productivity with a Time Trend
	6.3 Incorporating Pro-Cyclical Labor Productivity Growth
	6.4 Production Function Based Productivity Equation

