

Long-term forecast of Russian Economy (using Russian Interindustry Model RIM)

Performed by Savchishina Ksenia Institute of Economic Forecasting September, 2014

Outline

- Index About RIM model
- Data and statistical base
- Current progress in RIM
- General structure of Model
 - 1. Budget and fiscal block
 - 2. Investments and capital stock
 - 3. Employment
- Some forecast results

Index

Russian Interindustry Model

- ≻44 sectors
- ➤I-O data are available for 1980-2010
- ➢ Real and nominal sides
- ➤Using G7 and PortableDyme
- Model construction hasn't been finished yet

Data base - 1

Data base prepared by <u>Marat Uzyakov</u> and researches from the Institute of Economic Forecasting:

- Input-Output Tables: 1980-2010 (constant and current prices)
- Matrixes of trade and transport margins
- Tax matrix
- Import matrix
- Production capacity balances and sector investment

Data base - 2

Data from Russian Statistics Service, Ministry of Finances, the Central Bank etc.:

- National accounts (2002-2012)
- Institutional accounts (2002-2009)
- Consolidated budget data (including Pension fund)
- Demography and employment indicators
- Balance of payments
- Energy resources production data
- Prices data
- Exchange rates and money statistics

Current progress in RIM

Present version:

Real side:

- personal consumption
- government consumption
- investment and capital stock
- exports and imports
- energy block
- employment

Nominal side:

- budget and fiscal block
- value-added by sectors
- prices by sectors

Under construction:

- financial block
- balance of payments
- modeling of demography indicators

What's new from the last INFORUM Conference?

Real side of Model:

- ✓ Personal consumption estimates with use of saturation level
- ✓ Elaborated investment regressions
- ✓ Two-bucket system for calculation of capital stock
- New estimates for sector employment with use of production functions

Nominal side of Model:

 Calculations of net taxes on production and taxes on products used by sector

General structure of Model

Main identity:

net taxes on products used = taxes paid - subsidies <u>Regression:</u>

i – sector number

 $(A_{7i}+A_{11i}+A_{24i})$ – intermediate consumption of excise goods by sector i

import used_i = Σ_k ImportMatrix_{ki}

$$VAT_{i} = VATreceived_{i} - VATpaid_{i} = VATrate_{i} * OUT_{i} - (\Sigma_{k} VATrate_{k} * OUT_{ki}) - VATrate_{i} * Export_{i}$$

1 Agriculture - Net taxes on products used

SEE	=	1059.17	RSQ =	0.9846	RHO	=	0.32	Obse	er =	19 fro	m 19	992.000
SEE+2	1 =	1009.62	RBSQ =	0.9802	DW	=	1.35	DoFr	ee =	14 to	20	010.000
MAPE	=	24.54										
Va	riable	name		Reg-Coe:	E Me	exval	Ela	as	NorRes	Me	an	Beta
0 ta:	x1		-							9128	.57	
1 A _{7,}	1+ A _{11,1}	+ A _{24,1}		0.0265	6	2.3	3 0	.29	2.18	100341	.76	
2 exp	port1			0.0281	б	18.3	0.	.27	1.99	87846	.87	0.349
3 VA	Г1			0.0254	3	12.9	0.	.26	1.03	93461	.33	0.202
4 Gor	vExpens	ses		-0.0134	8	1.5	-0	.12	1.02	84048	.67	-0.133
5 im	port us	sed1		0.0442	5	1.0	0.	.28	1.00	57565	.08	0.289

Taxes on products used 1 Agriculture

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

Main identity:

Net taxes on production = taxes paid – subsidies <u>Regression:</u>

net taxes_i= a * OUT_i + b * capstock_i * GDP deflator + + c * BudgetExpenses

i - sector number (except i = 2, 3)

For i=2 (Petroleum extraction): taxes₂= a * tax rate₂ * oil extraction tax rate₂ = 493*(Urals Crude Oil price -15)*rateusd/261 For i=3 (Natural gas extraction): taxes₃= a * tax rate₃ * gas extraction tax rate₃ = 700 rubles/1 billion m³

19 Machinery - Net taxes on production

SEE	=	109.43	RSQ	= 0.9682	RHO	= -0	.57	Obser	=	6 from	2003.000
SEE+1	. =	88.83	RBSQ	= 0.9470	DW	= 3	.13	DoFree	=	3 to	2010.000
MAPE	=	2.95									
Var	iable	name		Reg-Coe	f Me	exval	Ela	s No	rRes	Mean	Beta
0 b.t	axop19)					·			2746.5	3
1 int	ercept	-		242.2937	3	12.1	0.	09 3	1.42	1.0	0
2 out	.19			0.0023	5	176.0	0.	74	1.35	861058.3	8 0.821
3 cap	stock1	L9*def		0.5204	0	16.3	0.	17	1.00	922.5	0 0.190

Taxes on operations

18 Fabricated metal products

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

capinv_i = a * (output_i / capstock_i) + + b * profit_i + c * credits_i + + d * capinv_i [t-1] + + e * @pos (OUT_i - peakOUT_i)

output/capstock – ratio of usage of capital stock credits – cumulative credits received divided by GDP deflator (level of debt load)

peakOUT – maximum sector output for years 1,...,t-1

1 Agriculture - Investments in capital stock

SEE	=	23.96	RSQ =	0.9330	RHO	=	0.15	Obser	=	9	from	200	02.000
SEE+1	=	24.22	RBSQ =	0.8928	DW	= :	1.70	DoFree	e =	5	to	202	10.000
MAPE	=	7.15											
Var	iable n	ame]	Reg-Coe	E Me	exval	Ela	as No	orRes		Mear	l	Beta
0 cap	inv1		_			·					307.4	12 -	
1 OUT	1 – pea	kOUT1		0.0003	8	59.0	0.	.12	58.50	97	7090.6	57	
2 pro	fit			1.7877	1 1	109.2	0.	.77	3.56		133.1	8	1.071
3 OUT	1 / cap	stock1		0.0145	7	38.0	0.	.20	1.15	4	4160.6	50	0.103
4 (cr	edits)/	def	-	42.8882	8	7.4	-0.	.09	1.00		0.6	55 -	-0.248

Agric ;1 e "Agriculture"

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

Расчет объема используемого основного капитала будем производить на основе системы "cascading two-bucket system":

Investment and capital stock - 4 Two-bucket system for estimating capital stock by sector:

ub1 = @cum(ub1,1,R_i) a = @exp(embTech_i*(t)) capstock1_i = @cum(cuminv1_i, a*capinv_i, R_i) / ub1 capstock2_i = @cum(cuminv2_i, capstock1_i, R_i)/ub1 capstock_i = capstock1_i + capstock2_i

R – depreciation ratio

embTech – rate of growth productivity embodied in capital

R – depreciation ratio (the 3rd column)

embTech – rate of growth productivity embodied in capital (the 2nd column)

- 1 .05 .15 "Agriculture"
- 2 .05 .15 "Petroleum extraction"
- 3 .00 .15 "Natural gas extraction"
- 4 .05 .15 "Coal mining"
- 5 .05 .15 "Other Fuels, incl. nuclear"
- 6 .00 .15 "Ores and other mining"
- 7 .05 .15 "Food, beverages, tobacco"
- 8 .05 .15 "Textiles, apparel, leather"
- 9 .05 .15 "Wood and wood products"
- 10 .00 .15 "Paper and printing"
- 11 .00 .15 "Petroleum refining"

. . .

developed by Clopper Almon

based on results of Ph.D. thesis by Daniel J.Wilson

Employment - 1

Estimation of sector employment by means of production functions with use of **embodied technical change** (for taking into consideration growth of labor productivity due to appearance of new equipment):

$$Q(t) = f(L(t), K(t), t)$$

The Cobb-Douglas production function

$$Q_t = A e^{rt} L_t^{\alpha} K_t^{1-\alpha}$$

α = 2/3 (typical value)
e^{rt}- disembodied technical change

Regressions are estimated for the following identity:

$$\log(L/K) = -\frac{\log A}{\alpha} - \frac{r}{\alpha}t + \frac{1}{\alpha}\log(Q/K).$$

Employment - 2

1 Agriculture - LOG (L/K)

SEE	=	0.08	RSQ	=	0.9509	RHO	=	0.	48	Obse	er	=	11	from	20	00.000
SEE+1	=	0.08	RBSQ	=	0.9386	DW	=	1.	04	DoFr	ree	=	8	to	20	10.000
MAPE	=	2.82														
Var	iable nam	ne		F	Reg-Coe	E Me	exval	_	Ela	as	Nor	Res		Mear	l	Beta
0 LOG	(L/K)		-					-						2.3	35	
1 inte	ercept			6	56.5447	1	49.1	-	28	.35	52	2.15		1.0	0	
2 time	e			-	-0.0379	8	63.0) –	32	.45	33	3.14		2005.0	0	-0.328
3 LOG	(Q/K)				1.4462	8	475.6	5	5	.09	1	.00		8.2	27	0.726

Agric ;1 e "Agriculture" $\log(L/K)$

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

Gross output and GDP in prices of 2008

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

Manufacturing Employment and capital stock

Trade ;31 e "Wholesale and retail trade" Employment and capital stock

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

CompServ ;38 e "Computing service" Employment and capital stock

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

The 22th INFORUM World conference, Alexandria (USA), 1-5 September 2014

Thank you!

Savchishina Ksenia savchishinak@mail.ru