
1

The Craft of Economic Modeling,

Part III. Multisectoral Models

Contents

14. Input-Output in the Ideal Case . 2
1. Input-Output Flow Tables . 2
2. Input-Output Equations. The Fundamental Theorem. 6
3. Combining Input-Output and Institutional Accounts . 9
4. Introduction to Input-Output Computing with just G . 14
5. Iterative Solutions of Input-output Equations . 32
6. The Seidel Method and Triangulation . 37
7. Introduction to Interdyme . 38
8. Matrix Tools in Interdyme . 54
9. Vector Elements in Regression Equations . 56
10. Systems of Detached-Coefficient Equations . 61
11. Changing input-output coefficients and prices . 68
12. Fixes in Interdyme . 68
13. A Historical Note . 69

15. Matrix Balancing and Updating - the RAS Method . 71
1. The RAS Algorithm . 71
2. Convergence of the Algorithm . 72
3. Preliminary Adjustments Before RAS . 74

16. Trade and Transportation Margins and Indirect Taxes . 76
1. Trade and Transportation Margins . 76
2. Indirect Taxes, Especially Value Added Taxes . 77

17. Making Product-to-Product Tables . 79
1. The Problem . 79
2. An Example . 80
3. The No-Negatives Product-Technology Algorithm . 85
4. When Is It Appropriate to Use This algorithm? . 86
5. A Brief History of the Negatives Problem . 88
6. Application to the U.S.A Tables for 1992 . 89
7. The Computer Program . 94

2

Chapter 14. Input-Output in the Ideal Case

1. Input-Output Flow Tables

Multisectoral models begin from an accounting of the flows of goods and services among various
industries of the economy. Table 1 shows a simple interindustry accounting, or input-output flow table,
for an imaginary but not unrealistic eight-sector economy which we will call TINY, a reference to the
simplicity of its national accounts, a simplicity designed, of course, to make it easy for us to concentrate
on essential concepts without being overwhelmed by big tables of data. In Table I, the selling industries
are listed down the left side of the table. The last, abbreviated to "GovInd," is "Government Industry", a
fictitious industry which in this table simply supplies the government with the services of its own
employees. Below these come the classes of factor payments, here Depreciation, Labor compensation,
Capital income (such as interest, profits, rents, or proprietor income), and Indirect taxes (such as property
taxes, sales taxes, and excise taxes as on alcohol, tobacco, and gasoline). Note the similarity of these
categories of factor payments to the categories of national income. Their sum is the row Value added.
Across the top of the table the same eight industries are listed as buyers of products. Here they are
followed by columns corresponding to the principal divisions of the "product side" of the national
accounts, namely

Con Personal consumption expenditure
Gov Government purchases of goods and services
Inv Investment
Exp Exports
Imp Imports (as negative numbers)

In input-output terms, these are the final demand columns. The next-to- last column, labeled FD for
"Final Demand," shows their sum. It is shaded to emphasized that it is derived by summing other
columns. The next last column, also shaded, is the sum of all the (non-shaded) elements row.

Across each row of the table are shown the sales of that industry to each of the industries and final
demand columns. Thus, the 100 in the Agriculture row and Manufacturing (Mfg) column means that
Agriculture sold 100 billion dollars (bd) of products to Manufacturing in the year covered by this table.
Typical sales here are grains to milling, live animals to meat packing, or fruits and vegetables to plants
which can or freeze them. The 15 in the Personal consumption (Con) column of the same row means that
Agriculture sold 15 bd of products directly to households during the year. These sales are primarily fresh
fruits and vegetables and eggs. In the table shown here, which is said to be in producer prices, they are
recorded at the price the farmer received for them. These products are not necessarily bought at the farm
gate, however, for going through wholesale and retail trade channels does not change the industry of
origin of a product; going through a manufacturing process does. Thus, an orange sold as an orange to
she who eats it appears as a sale from Agriculture to Personal consumption, despite the fact that it went
through a store. Another orange that was turned into frozen orange juice appears first as a sale from
Agriculture to Manufacturing at the price received by the farmer. It then reappears as a sale from
Manufacturing to Personal consumption at the manufacturer's price. But the price paid by the ultimate
consumer is neither the price received by farmer in the first case nor by the manufacturer in the second.
Where is the difference, the commercial margin? In this table, it is in the sales of Commerce to Personal
consumption expenditure. Transportation margins are handled similarly. Tables made with this pricing
convention are said to be "in producer prices". We shall look at other ways of handling the problem of
margins in Chapter 2.

3

Ta
bl

e
1.

 A
n

In
pu

t-O
ut

pu
t F

lo
w

 T
ab

le

 B

uy
er

Se

lle
r

A

gr
i-

cu
lt.

M
in

in
g

G
as

El
ec

M
fg

C
om

-
m

er
ce

Tr
an

s-
po

rt
Se

r-

vi
ce

s
G

ov In
d

C
on

G
ov

In
v

Ex
p

Im
p

FD
R

ow Su
m

A
gr

ic
ul

tu
re

20

1
0

10
0

5
0

2
0

15

1
0

40

-2
0

36
16

4
M

in
in

g
4

3
20

15

2

1
2

0
2

1
0

10

-1
0

3
50

G

as
&

El
ec

tri
c

6
4

10

40

20

10

25

0
80

10

0

0
0

 9
0

20
5

M
fg

20

10

4
60

25

18

20

0

40
0

80

20
0

12
0

-1
70

63

0
78

7
C

om
m

er
ce

2
1

1
10

2

3
6

0
35

0
10

6

10

0
37

6
40

1
Tr

an
sp

or
t

2
1

5
17

3

2
5

0
13

0
20

8

5
0

16
3

19
8

Se
rv

ic
es

6
3

8
45

20

5

20

0
50

0
40

10

30

-2

0
56

0
66

7
G

ov
In

d
0

0
0

0
0

0
0

0
0

15
0

0
0

0
15

0
15

0

In
te

rm
ed

ia
te

60

23

48

28
7

77

39

80

0

61
4

D
ep

re
c.

8
4

40

40

25
30

20

0

16

7
La

bo
r

68

21

31

35
0

15
0

10
7

49
0

15
0

13
67

C

ap
ita

l
20

2

56

60

40

12

59

0

25
9

In
di

re
ct

 ta
x

8
0

20

50

10
9

10

18

0

21
5

V
al

ue
 a

dd
ed

10
4

27

14
7

50
0

32
4

15
9

58
7

15
0

20
08

C
ol

Su
m

16
4

50

20
5

78
7

40
1

19
8

66
7

15
0

14
77

31

2
22

4
21

5
-2

20

20
08

4

As we look down the column for an industry, we see all the products which it needs for making its
own. In the Agriculture column, we see first of all 20 bd from Agriculture itself. These are sales
primarily of feed grains to animal husbandry, but include also sales of seed, hay, manure, and other
products. These sales within the industry are common and are referred to in input-output jargon as
"diagonals" because they appear on the main diagonal of the table. Further down the Agriculture column
we see 4 bd for Mining, primarily crushed limestone, but also some coal. The 20 bd spent on
Manufacturing bought gasoline, fertilizers, and pesticides. The 2 bd spent on Commerce were trade
margins on these manufactured products. The 2 bd spent on Transport included transportation margins on
the products of the other industries as well as costs incurred by the farmer in getting products to market.
The purchases from Services includes the services of veterinarians, lawyers, and accountants. All the
purchases of the industries from each other are called "intermediate" purchases because they do not go
directly to the final user but are "mediated" by other industries. The sum of the intermediate purchases by
each industry are in the row labeled "Intermediate" and shaded, as before, to show that it is derived by
adding other entries in the table. Many tables also have a total intermediate column; our table omits it for
the simple reason that it would not fit on the page.

Below the "Intermediate row" are the value-added rows. We find that Depreciation of equipment
came to 8 bd. Labor received 68 bd. (In our imaginary economy, we imagine that proprietor income has
been divided between labor and capital income. In most actual tables, it will be shown separately or
classified as capital income.) The 20 bd of capital income includes interest payments, corporate profits,
and capital's portion of proprietor income. The 8 bd of Indirect taxes is mostly property taxes.

Now precisely because the Capital income row of value added -- which includes both corporate
profits and proprietor income -- is the total of sales minus the total of expenses, the column sum for each
industry is equal to its row sum. For example, the row sum of Agriculture is 164 and the column sum (of
the unshaded entries) is 164, and so on for all eight industries. This fact has a remarkable consequence
which is the cornerstone of national accounting, namely that the sum of all the value-added entries is
equal to the sum of all the final demand entries. In our table, each of these groups of entries is surrounded
by a double line and each adds to 2008. Why is the total the same? Since the sum of each of the eight
industry rows, say R, is equal to the sum of the corresponding column, the sum of all eight rows, 2622, is
equal to the sum of all eight columns, say C, which is also 2622. Thus we have with R = C. But the total
of the final demands, D, is R minus the total of the intermediate flows, say X, or D = R - X. Likewise, the
total value added, V, is C, the sum of all the industry columns, less the sum of that part of them which is
intermediate, or V = C - X. But R = C implies that R - X = C - X or D = V. Naturally, this D or V has a
name, and that name is Gross Domestic Product. We have thus proved the fundamental identity of
national accounting: Gross Domestic Product (GDP) is the same whether measured by the products that
go to final demand or by the income which goes to factors. In our table, this identity appears in the fact
that the sum of the FD column, 2008, is the sum of the Value added row, also 2008, which is the GDP of
this economy. Arrayed in format of national accounts, our economy would appear as in Table 2.

Table 2. The Income and Product Account

Gross domestic product 2008 Gross domestic product 2008
 Personal Consumption 1477 - Depreciation 167
 Investment 224 = Net domestic product 1841
 Exports 215 - Indirect taxes 215
 Imports -220 = National income 1626
 Government purchases 312 Labor income 1367

 Capital income 259

5

Before leaving Table 1, we must make a fundamental point about it. With one small exception,
the table makes sense in physical units. We can measure the output of Agriculture in bushels, that of
Mining in tons, that of Gas and Electricity in BTU's, Transport in ton-miles, Labor in worker hours,
Capital income in ounces of gold, and so on. Detailed tables in physical terms have in fact been
made for China. Wassily Leontief, maker of the first input-output table, used to often insist in
seminars that any calculations had to make sense in physical terms.

The small exception, however, is important: the column sums of a table in physical terms are
utterly meaningless since all the elements are in different units. Naturally, the row totals -- which are
meaningful -- do not equal the meaningless totals of the corresponding columns. This point would
seem so obvious as to be not worth making were it not for the fact that it is often forgotten, precisely
by the makers of input-output tables. For if a table is made in the prices of some year other than the
year to which it refers, it is essentially in physical units. Thus, we can make a table for 2000 in 1980
prices, where the physical measure in each row is "one 1980 dollar's worth" of the product. In other
words, the physical unit for each product is how much of it one dollar would buy in 1980. For any
product for which a price index can be made, 2000- dollar amounts can be converted into 1980-dollar
physical units by the price index. For value added, since there is no very natural unit, one can simply
deflate all of the value-added cells by the GDP deflator. The total real value added will then be the
same as total real final demand. One can have in this way a perfectly sensible, meaningful table. But
its column sums are meaningless and certainly do not equal the corresponding row sums.

Unfortunately, some table makers have disregarded this fact and have simply forced the value
added in each industry of such a table to equal the difference between the row sum of the industry
and the sum of the intermediate inputs into it. The results make as much sense as saying that five
squirrels minus three elephants equals two lions. The arithmetic is right but the units are crazy.

This practice is called "double deflation" because first the outputs are deflated and then the
purchased inputs deflated and subtracted from the deflated output to obtain a mongrel, mixed-up-
units number, possibly positive but also possibly negative, mistakenly alleged to be a measure of
"constant-price value added". It is, in fact, what would have been left over for paying primary
factors, had producers, contrary to economic theory, gone right on producing with the previous
period’s inputs after prices have changed. That is certainly no measure of “real value added,” for it is
not, in all probability, what producers did. The error would perhaps be easier to see if labor input,
for which we have some measures of cost, were considered as an intermediate input and indirect
taxes were simply subtracted in current prices from output. The double-deflation procedure should
then give a measure of “real capital income.” In such a table, the deflators for capital income
would be different in different industries. The residuals might well be negative, especially if there
were a few years between the two periods. Trying to deflate the difference between two numbers
that are very close together by deflating each of the two numbers by different deflators and then
taking the difference between the two deflated items is simply asking for trouble.

The nonsense involved in double deflation is often masked by the taking the time periods of the
tables close together and “chaining” the index, so that negative values are unlikely. But nonsense in
small increments is still nonsense. Unfortunately, this nonsense is compounded by the fact that these
procedures are sanctioned by international statistical standards, and many statistical offices engage in
them. Economists have made matters worse by taking these mixed-units numbers as measures of
"real" product in studies of productivity.

6

As far as I am aware, there is no satisfactory way of measuring real productivity at the
individual industry level, precisely because industries cooperate with one another in production, and
how they do so changes. In one year, for example, the “television set industry” is a collection of
plants that make the cabinets, the tubes and the electronics, and assemble the sets. In a later year,
the industry has become assembly plants that buy cabinets, tubes, and electronics and assemble them.
Clearly, changes in sales (even in constant prices) divided by labor input in worker hours in this one
industry is not an appropriate measure of productivity increase. Rather, changes in “productivity” in
this case is meaningful only as applied to how much labor and capital is required by the whole
economy to produce a television set. We shall see how it can be meaningfully calculated. The
meaningful, correct calculation has nothing whatever to do with double deflation. But the quest to
allocate the changes in whole-economy productivity for particular products to individual industries is
a search for a nonexistent – and superfluous – El Dorado.

2. Input-Output Equations. The Fundamental Theorem.

An input-flow table describes an economy in a particular year. Its greatest value, however, lies
in the ability it gives us to answer the question What would the outputs, value added, and
intermediate flows have been had the final demands been different? To answer that question in the
simplest possible way, we must assume that the ratio of each input into an industry to that industry's
output remains constant when the final demands are changed. These ratios are known as the "input-
output coefficients," and may be defined by

where xij is the flow from industry i to industry j in Table 1.1 and qj is the output of industry j, that is,
it is the sum of row j or column j in the same table. For example,

Table 3 shows the complete matrix of these input-output coefficients corresponding to Table 1.

If we are willing to suppose that these coefficients remain constant as the final demand vector
changes, then for any vector of final demands, f, we can calculate the vector of industry outputs, q,
from the equation

(14.2.1) q = Aq + f

where A is the matrix of input-output coefficients in Table 3. If we happen to choose as f the column
vector of final demands in Table 1, (the first eight elements of the FD column: (36,3,90, ..., 150)'),
then q should be the column vector of industry outputs of Table 1 (the vector of row sums of the
eight industry rows: (164,50,205,...,150)'). For other values of f, of course, we will find other values
of q.

7

T
ab

le
 3

. I
np

ut
-O

ut
pu

t C
oe

ff
ic

ie
nt

s

A
gr

ic
M

in
in

g
G

as
&

El
ec

M
fg

C
om

Tr
an

s
Se

rv
G

ov
In

d

A
gr

ic
ul

tu
re

0.
12

19
5

0.
02

00
0

0.
00

00
0

0.
12

70
6

0.
01

24
7

0.
00

00
0

0.
00

30
0

0.
00

00
0

M
in

in
g

0.
02

43
9

0.
06

00
0

0.
09

75
6

0.
01

90
6

0.
00

49
9

0.
00

50
5

0.
00

30
0

0.
00

00
0

El
ec

tri
ci

ty
0.

03
65

9
0.

08
00

0
0.

04
87

8
0.

05
08

3
0.

04
98

8
0.

05
05

1
0.

03
74

8
0.

00
00

0

M
an

uf
ac

tu
rin

g
0.

12
19

5
0.

20
00

0
0.

01
95

1
0.

07
62

4
0.

06
23

4
0.

09
09

1
0.

02
99

9
0.

00
00

0

C
om

m
er

ce
0.

01
22

0
0.

02
00

0
0.

00
48

8
0.

01
27

1
0.

00
49

9
0.

01
51

5
0.

00
90

0
0.

00
00

0

Tr
an

sp
or

ta
tio

n
0.

01
22

0
0.

02
00

0
0.

02
43

9
0.

02
16

0
0.

00
74

8
0.

01
01

0
0.

00
75

0
0.

00
00

0

Se
rv

ic
es

0.
03

65
9

0.
06

00
0

0.
03

90
2

0.
05

71
8

0.
04

98
8

0.
02

52
5

0.
02

99
9

0.
00

00
0

G
ov

In
d

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

One way of solving (1.2.1) is to rewrite it as

(I - A)q = f
or

q = (I - A)-1f.

8

The matrix of (I - A)-1 on the right of this equation is known as the Leontief inverse of the A matrix.
For our example, it is shown in Table 4. Its elements have a simple meaning. Element (i,j) shows
how much of product i must be produced in order to produce one unit of final demand for product j.
This interpretation is readily justified by taking f to be a vector of zeroes except for a 1 in row i.
Then q will be the ith column of (I - A)-1, and its jth element will show exactly how much of product j
will have to be produced in order to supply exactly one unit of i to final demand. In our example, in
order to supply one unit of Agricultural product to final demand, 0.1691 units of Manufacturing must
be produced. Note that, in the example, all elements of the Leontief inverse are non-negative. In
view of the economic interpretation, that result is hardly surprising. Later in this chapter, we will
show mathematically that the Leontief inverse from an observed A matrix is always non-negative.

Table 4. The Leontief Inverse (I - A)-1

1.1647 0.0620 0.0107 0.1634 0.0263 0.0165 0.0096 0.0000
0.0405 1.0830 0.1126 0.0352 0.0144 0.0150 0.0092 0.0000
0.0617 0.1137 1.0683 0.0748 0.0623 0.0641 0.0452 0.0000
0.1691 0.2530 0.0538 1.1201 0.0791 0.1091 0.0396 0.0000
0.0184 0.0276 0.0093 0.0185 1.0077 0.0180 0.0106 0.0000
0.0210 0.0319 0.0304 0.0297 0.0120 1.0151 0.0102 0.0000
0.0604 0.0911 0.0548 0.0791 0.0612 0.0379 1.0368 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

 We may also ask how much of a primary resource, such as Labor or Capital, would be needed
for the production of a given final demand. We may define the resource coefficients similarly to the
input-output coefficients by

rij = yij/qj

where yij is the payment to factor i by industry j. For example, from Table 1, y2,4, the payment to
resource 2, Labor, by industry 4, Manufacturing, is 360. If we denote by R the matrix of the rij, then
the vector of total payments to each resource for an output vector q is Rq, and for a final demand
vector, f, it is R(I - A)-1f.

If we now think of each row of this matrix as a row vector and sum these vectors -- a process
which makes sense if all the rows are measured in monetary values in the prices of the year of the
table -- we get a row vector, v, of value-added per unit of output. Just as previously we asked how
outputs, q, would change if f changed while A remains constant, we can now ask how prices, p,
would change if v changed while A remains constant. The row vector p must satisfy the equations

(14.2.2) p = pA + v.

These equations state simply that the price of a unit of each product is equal to the cost of all
products used in producing that unit (the first term on the right) plus value-added per unit produced.
Just as the equations (14.2.1) provide the fundamental connection in multisectoral models between
final demands and outputs, so these equations provide the fundamental connection between unit
value added and prices. If we want to know how specific changes in productivity or in wages in one
or several industries will affect prices in all industries, these equations are the key. If we calculate
the prices for v vector given in the table, we should find that all prices are equal to 1.

1. Multiply (14.2.1) on the left by p to get
(A) pq = = pAq + pf
Multiply (14.2.2) on the right by q to get
(B) pq = pAq + pf
Subtract (B) from (A) to get
(C) 0 = pf - vq or pf = vq .

9

There is, furthermore, a relation of fundamental importance between the solutions of the two
sets of equations. Namely, given any A, f, and v, the q and p which satisfy q = Aq + f and p = pA + v
also satisfy

(14.2.3) vq = pf.

This equation says that the value of the final demands evaluated at the prices implied by equations
(14.2.2) are equal to the payments to the resources necessary to produce those final demands by
(1.2.1). Thus, if our outputs and prices satisfy the required equations, we can be certain that GDP
measured by the final demands in current prices will be equal to the GDP measured by the payments
to resources (or factors) in current prices. If we build these equations into our models, we can be
certain that the models will satisfy the basic accounting identity in current prices. This relation may
well be called the fundamental theorem of input-output analysis. Fortunately, it is as easy to prove as
it is important, and you shouldproduce your own proof. If you need help desperately, look in the
footnote. 1

3. Combining Input-Output and Institutional Accounts

The national accounts which we have presented so far in connection with the input-output table lack
some of the concepts which we found very useful in macroeconomic modeling, concepts like Personal
income, Personal disposable income, Personal saving, Personal income taxes, and Government transfers
to persons. The basic “institutions” in national accounts are (1) Persons, (2) Businesses, (3)
Governments, and (4) Rest of World. Sometimes businesses are divided between financial and non-
financial businesses, but we will not make that distinction in TINY. “Persons” includes non-profit
corporations such as private universities. The Rest of the World, abbreviated as RoW, shows only
transactions of “institutions” of other countries with the “institutions” of the country concerned.

The institutional accounts begin with the allocation of components of value added from the input-output
accounts to the institutions which receive them. Labor income is allocated to Persons; Depreciation and
Capital income is allocate to Business; Indirect taxes are allocated to Governments. Government
transfers, such as social insurance and welfare payments, are then moved from Governments to Persons,
to give Personal income. Then taxes are moved from Persons and Business to Governments, with
Disposable income as the balance.

There are several ways to present these accounts. The simplest is similar to that used in the USA NIPA
and familiar from Part 1 of this book.

10

 Institutional Accounts for TINY: NIPA-Style Presentation
Year 2000

Persons
+ Labor income 1367
+ Interest and dividends received 220
+ Government transfers 150
= Personal Income 1737
- Personal taxes 226
= Disposable income 1511
- Personal consumption expenditure 1477
= Personal saving 34

Business

+ Depreciation 167
+ Capital income 259
- Interest and dividends paid 220
- Investment 224
= Business saving -18

Governments
+ Indirect taxes 215
+ Personal taxes 226
- Gov't purchases of goods and services -312
- Gov't transfers to persons -150
= Gov't saving -21

 Rest of World
 + Imports 220
 - Exports 215
 = RoW saving 5

A consequence of the fundamental identity of the total value added and the total final demand in the
input-output table is that the total saving is identically zero. You can exercise your mental arithmetic to
quickly verify this identity for TINY. The NIPA-style account is clear, easy to read, and easy to convert
into a program for calculation. Furthermore, data for several years can be conveniently shown in parallel
columns that make comparison easy. Its disadvantage is that its form does not make evident why total
saving is zero or what are matching entries. For example, the form of the accounts does not show that
Personal taxes paid by Persons is the same as Personal taxes received by Governments.

That shortcoming is overcome in a second way of presenting the institutional accounts, a way I
will call the Balances presentation. This presentation also makes clear why total saving is zero. It is
shown in the table below.

11

Institutional Accounts for TINY: Balances Presentation

Transaction Persons Business Gov RoW PCE Gov Inv NetEx
p

Primary distribution 1367 426 215 0 = 1477 312 224 -5
 Interest and dividends 220 -220 =
 Gov’t transfers 150 -150 =
Balance: Inst. Income 1737 206 65 = 1477 312 224 -5
 Direct taxes -226 226 = 0
Balance: Disposable income 1511 206 291 = 1477 312 224 -5
 Personal consumption -1477 = -1477
 Govenment purchases -312 = -312
 Business investment -224 = -224
 Net imports 5 = 5
Balance: Saving 34 -18 -21 5 = 0 0 0 0

In the first line, the “Primary distribution” of Value added, labor income is given to Persons; Depreciation
and Capital income, to Business; and Indirect taxes, to Governments. To the right of the = sign are the
components of Final demand. The sum of the items to the left of the = sign is, of course, equal to the
sum of those on the right.

Next follow two transfer lines that (1) move Interest and dividends from the Business column to
the Persons column, and (2) move Government transfers to persons from the Government column to the
Persons column. The next line, labeled “Balance: Institutional Income,” is a balance line, the sum of the
preceeding lines. In the Persons column, it gives Personal income. Below it, the Direct taxes transfer
line moves personal income taxes from Persons to Government and could also move corporate profit
taxes from Business to Governments. (For TINY, however, we have assumed that these corporate taxes
are zero.) The next balance line, the sum of the previous balance line with the intervening transfer line,
gives Disposable income by institution. Then follow the lines which subtract the final demand
expenditures from the institutions which make them. The final balance line then gives the savings of each
institution on the left of the = sign and zeroes on the right. Of course, the sum of the items on the left of
this last line equals the sum of the items on the right, namely, zero. Thus, this presentation makes it clear
why total saving, including that of the Rest of the World in our country, is always zero. The major
disadvantage of this layout is that it cannot show data for several years in close proximity so as to make
comparison easy.

The international System of National Accounts (SNA) used by most countries other than the
USA, uses a presentation based on the Balances Presentation, but somewhat more complicated and much
less clear. Here it is for TINY.

12

Institutional Accounts for TINY: SNA-Style Presentation

Institution Persons Business Governments Rest of World
Transaction Sources Uses Sources Uses Sources Uses Sources Uses
Primary distribution 1367 426 215 220 215
 Interest and dividends 220 220
 Government transfers 150 150
 Personal tax 226 226
Totals 1737 226 426 220 441 150 220 215
Balance:Disposable income 1511 206 291 5
 Personal consumption expenditures 1477
 Government expenditures 312
 Business investment 224
Totals 1511 1477 206 224 291 312 5
Balance: Saving 34 -18 -21 5

Under each institution are two columns, one for sources of funds for the institutions and one for uses
of of funds. Instead of a single line for each of the balances, two lines are necessary, one to take the
totals and one to show (in the Sources column) the result of subtracting total uses from total sources.
I have not shown a balance line of Institutional of income (of which Personal income is a highly
useful instance) because this concept plays no role in the SNA, which thus fail to give a concept
useful as a base for calculating personal income taxes. The SNA presentation does not make clear
why total saving is zero and requires two lines for each balance instead of one, though I have seen a
number of presentations in which the total lines ares omitted, thus making it very hard for the reader
to figure out what is going on. About the only virtue of the SNA system is that it largely avoids
negative numbers.

Yet a fourth presentation combines the input-output table with the institutional accounts in
what is called a Social Accounting Matrix or SAM. The SAM for TINY is shown in the box below.
In an input-output table, the row sums equal the corresponding column sums for the industries. The
SAM generalizes that idea so that all accounting identities are expressed by requiring the sum of each
row to equal the sum of the corresponding column in a square matrix. In the SAM for TINY, the
first rows are those of the input-output table, both the products and the value-added. Below these
rows, we add a row for each institution and then one for each final demand column and finally a row
for saving. Between the columns for industries and the final demand columns we slip columns with
the same names as the value-added rows, and then a column for each institution. After the final
demand columns, we append one corresponding to the Savings row. The “Primary distribution” line
of the SNA-Style accounts is then represented by the total of each type of value added into the cell at
the intersection of row for the institution receiving the income and the column of the type of income.
At this point, the row totals equal the column totals for the industries and for value-added
components. The transfers among institutions are then shown by entering the amount in the row of
the receiver and the column of the payer. The totals of each final demand column are entered into
the corresponding row in the column of the institution purchasing that final demand. All row totals
now equal corresponding column totals except for the four institutions. Their row totals are their
receipts while their column totals are their expenditures. They differ by the amount of saving by
each institution. So if we now enter these savings in the Saving row at the bottom of the table, the
row totals equal the column totals also for the institutions. The row sum of the Saving row is, as has
been said repeatedly, zero, so to match the Saving row, we just need an all-zero Saving column.

13

So
ci

al
 A

cc
ou

nt
in

g
M

at
ri

x
fo

r
T

IN
Y

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

A
g

M
in

G
&

E
M

fg
C

om
Tr

an
s

Se
rv

G
ov

 In
d

D
ep

La
bo

r
C

ap
ita

l
In

d
Ta

x
Pe

r-
so

ns
B

us
G

ov
't

R
oW

PC
E

G
ov

In

ve
st

Ex
p

Im
p

Sa
v

 T

ot

1
A

g
20

1
0

10
0

5
0

2
0

15
1

0
40

-2
0

16
4

2
M

in
in

g
4

3
20

15
2

1
2

0
2

1
0

10
-1

0
50

3
G

&
E

6
4

10
40

20
10

25
0

80
10

0
0

0
20

5

4
M

fg
20

10
4

60
25

18
20

0
40

0
80

20
0

12
0

-1
70

78
7

5
C

om
m

er
ce

2
1

1
10

2
3

6
0

35
0

10
6

10
0

40
1

6
Tr

an
sp

or
t

2
1

5
17

3
2

5
0

13
0

20
8

5
0

19
8

7
Se

rv
ic

es
6

3
8

45
20

5
20

0
50

0
40

10
30

-2
0

66
7

8
G

ov
In

d
0

0
0

0
0

0
0

0
0

15
0

0
0

0
15

0

9
D

ep
re

c.
8

4
40

40
25

30
20

0
16

7

10
La

bo
r

68
21

31
35

0
15

0
10

7
49

0
15

0
13

67

11
C

ap
ita

l
20

2
66

60
40

12
59

0
25

9

12
In

dT
ax

8
0

20
50

10
9

10
18

0
21

5

13
Pe

rs
on

s
13

67
22

0
15

0
17

37

14
Fi

rm
s

16
7

25
9

42
6

15
G

ov
't

21
5

22
6

44
1

16
R

oW
0

17
PC

E
14

77
14

77

18
G

ov
 P

ur
ch

31
2

31
2

19
In

ve
st

22
4

22
4

20
Ex

po
rt

21
5

21
5

21
Im

po
rt

-2
20

-2
20

22
Sa

vi
ng

34
-1

8
-2

1
5

0

23
C

ol
 S

um
16

4
50

20
5

78
7

40
1

19
8

66
7

15
0

16
7

13
67

25
9

21
5

17
37

42
6

44
1

0
14

77
31

2
22

4
21

5
-2

20
0

14

Social Accounting Matrices have proven quite popular with economists. I find the term used
to mean simply national accounts with a consistent input-output table and institutional accounts. In
fact, a SAM is just one way of presenting such a system. Its only advantage, as far as I can see, is
that the form makes evident the consistency. Otherwise, it is a perfectly terrible way to present data,
as you can readily see by comparing the ease of reading any of the other ways of presenting the
TINY accounts with the SAM. And as the input-output table increases in detail, the SAM becomes
worse and worse as a way of actually viewing data. Consequently, we shall make no further use of
SAM’s and will generally use the NIPA-like presentation because of the important advantage that
data for several years can be shown in parallel columns.

To illustrate the use of integrated national accounts in combination with interindustry tables,
we need historical series for at least the national accounts aggregates. I have made up such a data
bank for TINY with the values shown above for the year 2000 and with values for other years from
1978 to 2003 made up by assuming a movement similar to that of the corresponding entry in the
USA NIPA. These “historical” series are in the TINY data bank.

4. Introduction to Input-Output Computing with just G

In this section, we will see how to turn the TINY input-output table and data bank into a
simple input-output model using only commands available in G. In this model, we will move each
final demand column forward and backward over the period 1995 - 2003 by the index of the
corresponding GDP component in the TINY data bank. Then we move all the final demand vectors
except investment up by 3.0 percent per year from 2003 to 2010. Investment is moved forward by a
wavy series composed of a base series growing at 3.0 percent per year plus a sinusoidal function.
Input-output coefficients and the composition of the five final demand components are kept constant.
Outputs by each industrial sector are then calculated for every year 1995 to 2010. With the
additional assumption that the shares of each type of income in value added by each industry remain
constant, we calculate income of each type in each industry. Piecewise linear trends in the input-
output coefficients, value-added coefficients, and composition of the final demand vectors could
easily be introduced, but that has been left as an exercise. This model is incomplete and somewhat
inconsistent with itself for many reasons, including th following: (a) it does not assure consistency
of Personal consumption expenditure with the Personal income it implies (b) it does not relate the
imports of a product to the domestic use of the product, and (c) investment is not detailed by industry
and related to the growth of the industry as found by the model. Introducing such features to exploit
the full potential of input-out modeling will require the Interdyme software described in following
sections. Despite these limitations, such simple models as the one described here, though with
greater industry detail and more finely divided final demands, have been widely used by groups
which have a macroeconomic model and want the industry outputs consistent with the its final
demand forecasts.

Working with input-output in G requires the use of a new sort of data bank known as a VAM
(Vectors And Matrices) file. As the name suggests, this type of data bank holds time series of
vectors and matrices. G has commands which can add, subtract, multiply, and invert matrices and
add and subtract vectors and multiply them by matrices. Thus, the operations discussed so far, and
several others, can easily be performed in G. A VAM file differs in two important respects from the
G data banks we have worked with so far:

 (1) In the standard G bank, all elements are the same size, namely a time series of a single
variable beginning at the beginning of the data bank and extending over the number of

15

observations in the bank, as specified by the G.cfg file. In VAM files, elements are time
series of vectors or matrices of various dimensions. As in the standard G bank, all time
series are the same length.

(2) In standard G banks, we can create new series as we work, for example, with f, fex, or data
commands. In VAM files, we buy the flexibility of having elements of various sizes by
specifying at the outset the contents of the file, that is, the names and dimensions of each
vector or matrix in the bank along with the names of the files giving the titles of the row or
columns of the vector or matrix. One might suppose that it is a bit of nuisance to have to
specify this structure of the VAM file at the outset. In practice, however, this need to
prespecify structure proves a useful discipline in building complex models. If, as a model
evolves, it becomes necessary to revise the specification of the VAM file, it is easy to copy
the contents of the old file into the new, enlarged file. This specification is accomplished by
a file usually named VAM.CFG.

We can illustrate the use of the VAM file and some new G commands for making some
simple calculations with the input-output table presented in section 1 of this chapter, which we will
assume is for the year 2000. The box below shows the VAM.CFG file for this model, which we will
call TINYI. It and all the files used in this chapter are in the file TINY.ZIP. I suggest that you make
a directory (also called a folder), copy TINY.ZIP into it, and unzip it.

 The first line in VAM.CFG gives the beginning and ending years for the VAM file. The next
line, the one beginning with a #, is a comment to clarify the structure of the file. Comments
beginning with a # can be placed anywhere in the file. Then come free-form lines giving

1. The name of the element
2. Its number of rows

16

VAM.CFG File for the TINY Model
1995 2010
Vam file for Simplest Model
FM 8 8 0 sectors.ttl sectors.ttl #Input-output flow matrix
AM 8 8 0 sectors.ttl sectors.ttl #Input-output coefficient matrix
LINV 8 8 0 sectors.ttl sectors.ttl # Leontief inverse
out 8 1 3 sectors.ttl # Output
pce 8 1 0 sectors.ttl # Personal consumption expenditure
gov 8 1 0 sectors.ttl # Government spending
inv 8 1 0 sectors.ttl # Investment
ex 8 1 0 sectors.ttl # Exports
im 8 1 0 sectors.ttl # Imports
fd 8 1 0 sectors.ttl # Total final demand
dep 8 1 0 sectors.ttl # Depreciation
lab 8 1 0 sectors.ttl # Labor income
cap 8 1 0 sectors.ttl # Capital income
ind 8 1 0 sectors.ttl # Indirect taxes
depc 8 1 0 sectors.ttl # Depreciation coefficients
labc 8 1 0 sectors.ttl # Labor income coefficients
capc 8 1 0 sectors.ttl # Capital income coefficients
indc 8 1 0 sectors.ttl # Indirect taxes coefficients
pcec 8 1 0 sectors.ttl # Personal consumption shares
invc 8 1 0 sectors.ttl # Investment shares
govc 8 1 0 sectors.ttl # Gov shares
exc 8 1 0 sectors.ttl # Export shares
imc 8 1 0 sectors.ttl # Import shares
x 8 1 0 sectors.ttl # Working space
y 8 1 0 sectors.ttl # Working space

3. Its number of columns
4. The maximum number of lags with which a vector occurs in the model or a p if the

matrix is a “packed matrix” – a device useful in large-scale models.
5. The name of a file containing the names of the rows of a vector or matrix
6. The name of a file containing the names of the columns of a matrix
7. A # followed by a brief description of the element.

As far as the computer is concerned, these lines are free format; all that is needed is one or more
spaces between each item on a line. But this is a file also read by humans, so putting in spaces to
make the items line up in neat columns is also a good idea. The accompanying box shows the
vam.cfg file for the TINY model based on example of section 1 of this chapter.

To create a vam file from a vam configuration file the command in G is

vamcreate <vam configuration file> <vam file>

For example, to create the vam file HIST.VAM from the configuration file VAM.CFG, the command
is

vamcreate vam.cfg hist

The vamcreate command may be abbreviated to vamcr, thus:

17

The FD.dat File for Introducing the Final Demands into the VAM File
vmatdata c 5 1 1 8 15
2000 pce gov inv ex im
PersCon Gov Invest Exports Imports
Agriculture 15 1 0 40 -20
Mining 2 1 0 10 -10
Electricity 80 10 0 0 0
Manufacturing 400 80 200 120 -170
Commerce 350 10 6 10 0
Transportation 130 20 8 5 0
Services 500 40 10 30 -20
Government 0 150 0 0 0

vamcr vam.cfg hist

At this point, the newly created vam file has zeroes for all its data. We will now see how to put data
into it and work with that data. The first step is to assign it as a bank. The command is

vam <filename> <letter name of bank>

For example,

vam hist b

will assign HIST.VAM as bank b. Letters a through v may be used to designate banks. However,
it is generally a good practice to leave a as the G bank which was initially assigned.

In order not to have to continually repeat the bank letter, most commands for working with
VAM files use the default VAM file. It is specified by the "dvam" command

dvam <letter name of bank>
For example

dvam b

A vam file must already be assigned as a bank before it can be made the default. However, if several
VAM files are assigned, the default can be switched from one to another as often as needed.

The usual ways to introduce data into a VAM file are with the matin command for matrices
and the vmatdat command for vectors. We can illustrate them with the data for TINY from section 1.

18

 The Flows.dat File for Introducing the Input-Output Flow Matrix into the VAM File

matin FM 2000 1 8 1 8 15
Agricul Mining Elect Mfg Commerce Transp Services Govt
Agriculture 20 1 0 100 5 0 2 0
Mining 4 3 20 15 2 1 2 0
Electricity 6 4 10 40 20 10 25 0
Manufacturing 20 10 4 60 25 18 20 0
Commerce 2 1 1 10 2 3 6 0
Transportation 2 1 5 17 3 2 5 0
Services 6 3 8 45 20 5 20 0
Government 0 0 0 0 0 0 0 0

The matin command on the first line is followed by the matrix name in VAM.CFG file, then
by the year to which the matrix belongs, then the number of the first row and last row in the
following rectangle of data, then the number first column and last column in the rectangle. (In the
present case, the rectangle is the whole table; but this ability to read in a table rectangle-by-rectangle
is quite useful for reading tables scanned from printed pages.) The last number on the matin line is
the skip count, the number of characters to be skipped at the beginning of each line. These characters
usually give sector names or numbers. The # in the first position marks the second line as a
comment. Then come the data; each line is in free format after the initial skip. (Do not use tabs in
characters which are to be skipped; the tab character will be counted as just one character.)

The FD.dat file shown below illustrates the introduction of vectors, in this case, the final
demands. The vmatdat command is rather flexible; it can introduce a number of vectors for one year
or one vector for a number of years. The vectors can be the rows or the columns in the following
rectangle of data. Because of this flexibility, we have to tell the command how to interpret the
rectangle of data. The command must therefore by followed by a c or an r to indicate whether the
vectors appear as columns or rows in the following rectangle of data. Here, the vectors are clearly
columns. The next number is the number of vectors in the rectangle; here 5. Next is the number of
years represented in the rectangle. Here it is 1, for the columns are different vectors for the same
year. (Either the number of vectors or the number of years must be 1.) The next two numbers are
the first and last element numbers of the data in the rectangle, and the last is the skip count as before.
Since this command is introducing several vectors for one year, that year is specified at the beginning
of the next line, and the names of the vectors follow it. (If we were introducing data for one vector
for several years, the vector name would be in the first position on this line, followed by the year
numbers.)

The value-added rows are introduced by the vmatdat command and data shown in the box
below.

19

The VA.DAT File for Introducing the Value-added Vectors
vmatdata r 4 1 1 8 15
2000 dep lab cap ind
1 2 3 4 5 6 7 8
Depreciation 9 4 40 40 25 30 20 0
Labor 68 21 31 350 150 107 490 150
Capital 20 2 56 60 40 12 59 0
Indirect tax 8 0 20 50 109 10 18 0

Here, finally, are the G commands to create the VAM file and load the data into it:

Create and load the VAM file for TINY
vamcreate vam.cfg hist
vam hist b
dvam b
Bring in the intermediate flow matrix
add flows.dat
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat

These and the following commands to G for making the calculations described in this section are in the
file Gmodel, shown in an accompanying box. To fit this large file on a single page, some commands have
been doubled up on a single line but seprated by a semicolon – a trick which works in G.

Now let us look at some of the data we have introduced by displaying them in a grid on the
screen. The command

show FM y 2000

will show in a spreadsheet-like grid the FM matrix, the flow matrix for the year 2000. To adjust the
default column width and the number of decimal places in the display, click the Options menu item. Not
only does this display look like a spreadsheet display, it also works like one in that you can copy and
paste between data from one to the other.

To look at a row, say row 2, of the FM matrix for all years of the VAM file, the command is

show FM r 2

while to show column 5for all years, the command is

show FM c 5

Thus, in showing a matrix, we have to choose among showing the whole matrix for one year and showing
one row or column for all years. The choice is indicated by the letter – a y, r or c – following the matrix
name.

20

Gmodel.pre –File to Build a TINY model using only G, no Interdyme
zap ;clear
bank tiny
vamcreate vam.cfg hist
vam hist b
dvam b
Bring in the intermediate flow matrix
add flows.dat
show b.FM y 2000
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat
fdates 2000 2000
Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
show b.out
Copy intermediate flows to AM and convert to coefficients
mcopy b.AM b.FM
coef AM out
vc depc = dep/out ; vc labc = lab/out; vc capc = cap/out; vc indc = ind/out
Copy the 2000 coefficient matrices to all the other years
fdates 1995 2010
Copy the 2000 AM matrix into 1995 - 2010
dfreq 1
f one = 1.
index 2000 one AM
Demonstrate that AM has been copied by showing its first column.
show b.AM c 1
index 2000 one depc ; index 2000 one labc ;index 2000 one capc ;index 2000 one indc
Move the four final demand columns by their totals
in the historical years, 1995 - 2003
fdates 1995 2003
index 2000 pcetot pce;index 2000 invtot inv; index 2000 govtot gov;index 2000 extot ex
index 2000 imtot im
Extend the final demands from 2003 to 2010 using a 3 percent growth rate for all
but inv and a wavy pattern for it.
fdates 1995 2010
Create a time trend
f time = @cum(time,one,0)
f g03 = @exp(.03*(time-9))
f waves = g03 + .3*@sin(time-9)
fdates 2003 2010
index 2003 g03 pce ; index 2003 waves inv ; index 2003 g03 gov ;index 2003 g03 ex
index 2003 g03 im
Take the Leontief inverse of the A matrix
fdates 1995 2010
mcopy b.LINV b.AM
linv LINV
Add up the final demands
vc fd = pce+gov+inv+ex+im
Compute total outputs
vc out = LINV*fd
Compute Value added
The following are element-by-element multiplication
vc dep = depc*out ; vc lab = labc*out; vc cap = capc*out; vc ind = indc*out
gdates 1995 2003 2010
fadd graphs.fad sectors.ttl

21

Showing vectors is simpler because we do not have to make this choice; we just name the vector and get
all values for all years. Here are two examples

show ind # Display the indirect tax vector
show b.pce # Display the personal consumption expenditure vector

The second of these examples shows that the show command allows us to specify by the bank letter
followed by a dot the bank from which the item is to be shown.

Now that we have read in the data and displayed it to check that it was accurately read, we can begin to
compute. To calculate the input-output coefficient matrix, we need out, thevector of outputs by industry.
It was not read in, but it can be computed by summing the rows of the FM matrix and then adding to this
row sum the final demand columns. Here are the two commands and the show command to see the result:

Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
show b.out

We are now ready to copy the flow matrix, stored in FM, to AM and then convert it to input-output
coefficients by dividing each element of each column by the corresponding element of the out vector. We
do the copy with the with the mcopy command, for “matrix copy.” The general form of the mcopy
command to copy matrix or vector A from bank x to element B in bank y is

mcopy y.B [=] x.A

The = sign is optional but is useful reminder of which way the copy is going. The y. is optional if y is the
default VAM file, and the same is true for the x.. Since this copy and these calculations need be done
only for one year, the first, 2000, we first set the fdates so that the mcopy and coef commands work only
on the years from 2000 to 2000 (which is to say, only for 2000). Here are the commands

Copy intermediate flows to AM and convert to coefficients
fdates 2000 2000
mcopy b.AM = b.FM
coef AM out
show AM y 2000
Create value-added coefficient vectors.
vc depc = dep/out
vc labc = lab/out
vc capc = cap/out
vc indc = ind/out
Set fdates back to the entire range of the VAM file.
fdates 1995 2010

With the input-output coefficients calculated, we can now go on to illustrate finding the Leontief
inverse, calculating outputs from exogenous forecasts of final demands, calculating value-added
components, and displaying, graphing, and making tables of the results. We will first copy the input-
output coefficient matrix and the value-added coefficient vectors from 1995 to the other years out to
2010. We can conveniently do this with G’s index command. This command is used to move all

22

elements of a vector or matrix in the default VAM file forward or backward in proportion to a guide
series. Its general form is:

index <base year> <guide series> <matrix or vector>

It operates over the range specified by the current value of the fdates. Since we just want to copy the
coefficients to all the years, our guide series will be simply a series of 1's, which we shall call one. Here
are the commands

Copy the 2000 AM matrix into 1995 - 2010
dfreq 1
f one = 1.
index 2000 one AM
index 2000 one depc
index 2000 one labc
index 2000 one capc
index 2000 one indc
show AM c 1

The last command displays in a grid the first column of the AM matrix for all the years; all columns of
this display should, of course, be identical. For purposes of our illustration, we will let AM remain
constant in all years.

 The final demands, however, we will move in a slightly more interesting way. Between 1995
and 2003, each the elements of each final demand column will follow the index of the total of that column
as given in the national accounts. Here are the G commands to make that happen.

Move the four final demand columns by their totals
in the historical years, 1995 - 2003
fdates 1995 2003
index 2000 pcetot pce
index 2000 invtot inv
index 2000 govtot gov
index 2000 extot ex
index 2000 imtot im

From the base of 2003, we will have all of them except investment grow at a steady 3 percent per year to
2010. Investment will also have one component growing at this same rate but added to it – to make the
results more interesting to view – will be a sine curve with a period of 2B years. Here are the commands
for this operation.

fdates 1995 2010
Create a time trend
f time = @cum(time,one,0)
f g03 = @exp(.03*(time-9))
f waves = g03 + .3*@sin(time-9)
fdates 2003 2010
index 2003 g03 pce
index 2003 waves inv
index 2003 g03 gov
index 2003 g03 ex
index 2003 g03 im

To add up the components of final demand to the total, we use the vc (for vector calculation) command. It
can add up any number of vectors to get a total. Here are the commands.

23

Add up the final demands
vc fd = pce+gov+inv+ex+im
show fd

We are now going to ignore the fact that the AM matrix is the same in all years – we could have changed
it had we wanted to – and take its Leontief inverse in all years in the fdates range. The command

linv <square matrix> [year]

converts the square matrix into its Leontief inverse. For example,
linv A

converts A into . We then multiply this inverse by the final demand vector to compute the
output vector. The linv command works over the fdate range unless the optional year argument is
present.

Take the Leontief inverse of the A matrix
mcopy LINV = AM
linv LINV
show LINV y 2000

Compute total outputs
vc out = LINV*fd
show b.out

With the outputs known, we can compute the implied value-added of each type by each industry with the
following commands. In them, the vc command will recognize that the dimensions of the vectors on the
right are such that element-by-element multiplication makes sense and perform it.

Compute Value added
The following are element-by-element multiplication
vc dep = depc*out
vc lab = labc*out
vc cap = capc*out
vc ind = indc*out
show lab

As we went along, we showed results in spreadsheet-like grids to check that our answers were generally
reasonable. Now we need to graph the results. In doing so, we use the fact that elements of vectors in a
VAM file can be referred to in G simply by the name of the vector followed by a numeral. We can graph
the second element of the out and pce vectors from the VAM file assigned as bank with the graph
command like this:

gr b.out2 b.pce2

If the VAM file is the default VAM file, we can omit the bank letter and period. Thus, in the instance just
given, we could do just

gr out2 pce2

This way of working with a time series of elements of a vector works also for type and r commands and
for the right-hand side of f or fex commands. Similarly, we can refer to an element of a matrix in a
type, graph, or regression command or the right side of an f command an element of the matrix name
followed by the row number, followed by a dot, followed by the column number. For example,

24

 type AM3.5
will print to the screen the values of the element in the third row and fifth column of the AM matrix.

We can get a lot more graphs very quickly by use of G’s fadd command. The name fadd is a contraction
of “file-directed add command.” It works with text substitution in a way that is very convenient in
working with multisectoral models. The general form is

fadd <command file> <argument file>

In our case, the “command file” will be the following file, named GRAPHS.FAD:

vr 0
ti %3 %5
subti Output and Final demand
gname out%3
gr b.out%3 b.fd%3
subti Depreciation,Labor income, Capital income, Indirect taxes
gname va%3
gr b.dep%3 b.lab%3 b.cap%3 b.ind%3
ti
subti

and the argument file will be the same SECTORS.TTL file which we used for supplying row and column
names for the matrices and vectors in the VAM file, namely:

Agricul ;1 e "Agriculture"
Mining ;2 e "Mining and quarrying"
Elect ;3 e "Electricity and gas"
Mfg ;4 e "Manufacturing"
Commerce ;5 e "Commerce"
Transport ;6 e "Transportation"
Services ;7 e "Services"
Government ;8 e "Government"

Note that some of the lines in the command file – for example, the second – have a % followed by a
number. These numbers refer to “arguments” from the “argument” file. For example, on the first line of
the argument file, argument 1 is Agricul, argument 2 is ;, argument 3 is 1, argument 4 is e , and argument
5 is Agriculture . Normally an argument is ended by a space or punctuation. Enclose arguments which
contain spaces – such as the names of some sectors – in quotation marks. When the second line of the
command file,

ti %3 %5

is executed with the arguments 3 and 5 from the first line of the argument file replacing the %3 and %5,
the effect is that G executes the command

ti 1 Agriculture

25

The effect of the fadd command is that the entire command file is executed first with arguments from the
first line of the argument file, then with the arguments from the second line of the argument file, and so
on. Thus, with the single command

fadd graphs.fad sectors.ttl

G will draw for all sectors graphs like the two shown below for Manufacturing.

 4 Manufacturing 4 Manufacturing
 Output and Final demand

 1031

 515

 0

1995 2000 2005 2010
 b.out4 b.fd4

4 Manufacturing4 Manufacturing
 Depreciation, Labor income, Capital income, Indirect taxes

 458

 229

 0

1995 2000 2005 2010
 b.dep4 b.lab4 b.cap4 b.ind4

We have used some but not all of the G commands for matrix arithmetic in a VAM file. For
reference, here are some others.

minv A converts A into its inverse
madd A = B + C adds B and C and stores in A
madd A = B - C subtracts C from B and stores result in A
mmul A = B*C multiply B and C and store result in A
mmul A = B’C multiplies B transpose by C and stores result in A
mmul A = B&C does element-by-element multiplication of B and C and stores in A
mmul A = B/C element-by-element division of B by C stored in A
mtrans A B the transpose of B is stored in A

In all of them, the command may be followed by an optional year in which to do the calculation; absent
the year, the calculation is done for all years in the fdates range.

For tabulating the contents of a VAM file, we use exactly the same program, Compare, as we
have used for macro models. It has, however, some capacities we have not used previously but now need.
First of all, when we click Model | Tables on the G main menu, we need to choose “vam” as the type of
the first bank, then give “hist” as its name; in the “Stub file” control, fill in “tiny”, and in the “Output file
name” box type “tiny.out”.

26

The TINY.STB File
\dates 1995 2000 2005 2010 1995-2000 2000-2005 2005-2010
\pages off
\noformat
\title TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

; out Output of Industries
&
out1 ;1 Agriculture
out2 ;2 Mining and quarrying
out3 ;3 Electricity and gas
out4 ;4 Manufacturing
out5 ;5 Commerce
out6 ;6 Transportation
out7 ;7 Services
out8 ;8 Government
;
\add tiny.tab pce "Personal Consumption Expenditure"
;
\add tiny.tab gov "Government Expenditures"
;
\add tiny.tab inv "Investment by Supplying Industry"
;

The next line forces a new page
*
\matcfg Matlist.cfg
\center Matrix Listing
\row
\cutoff .001
\matlist 1-8

The first lines with the “\dates” command is familiar from macro models. Since I want to bring the
results into a word processor for printing, I have turned off the page numbering and all commands to the
printer in the next two lines. The “\title” command gives a title to be printed across the top of each page
of output. As with macro stub files, a line beginning with a “;” just puts the rest of the line in the output
file, and a “&” command puts a line of dates across the page. The next eight lines then show the output
and its growth rates for the eight industries of the Tiny model for the dates specified.

We have not previously used Compare’s \add command, which works just like G’s add command,
including a feature of the add command which we have not much used, namely, that it accepts arguments.
The TINY.TAB file is shown in the box below. Instead of the lines in TINY.STB for printing the output
of industries, we could have used the single line

\add tiny.tab out “Output of Industries”

The effect would have been exactly the same.

27

The TINY.TAB File
; %1 %2
&
%11 ;1 Agriculture
%12 ;2 Mining and quarrying
%13 ;3 Electricity and gas
%14 ;4 Manufacturing
%15 ;5 Commerce
%16 ;6 Transportation
%17 ;7 Services
%18 ;8 Government

The TINY.TAB is a bit confusing to the eye because of the strings “%11" , “%12", and similar strings
below them. To the eye, this may look like a reference to argument 11 or argument 12. But the computer
knows that there can be only nine arguments and thus the third character in these strings is not part of the
argument specification. It will read these as “argument 1 followed by the character 1" or “argument 1
followed by the character 2.”

The results the tabulations described thus far are shown in the first box below.

The last five lines of TINY.STB are concerned with making a matrix listing from the VAM file. What is
meant is best explained by looking at the results, which are shown for the first three industries in the
second box below. For each row of the input-output table, the matrix listing shows each element of the
identity:

output = intermediate demand + final demand.
Indeed, each element is shown in each year specified by the \dates command and growth rates of the
element are shown for the periods specified by the same command. This matrix listing technique is
important not only for the information it displays but also the consistency of the forecasts which it
emphasizes.

28

 TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

 out Output of Industries
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 140.7 164.0 189.6 216.7 3.1 2.9 2.7
2 Mining and quarrying 43.5 50.0 57.5 66.1 2.8 2.8 2.8
3 Electricity and gas 171.1 205.0 228.6 263.8 3.6 2.2 2.9
4 Manufacturing 663.0 787.0 908.3 1030.9 3.4 2.9 2.5
5 Commerce 331.0 401.0 439.9 510.0 3.8 1.9 3.0
6 Transportation 164.3 198.0 220.3 254.4 3.7 2.1 2.9
7 Services 555.8 667.0 738.2 854.7 3.6 2.0 2.9
8 Government 133.2 150.0 177.7 206.5 2.4 3.4 3.0

 pce Personal Consumption Expenditure
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 12.4 15.0 16.3 19.0 3.9 1.7 3.0
2 Mining and quarrying 1.6 2.0 2.2 2.5 3.9 1.7 3.0
3 Electricity and gas 65.9 80.0 87.1 101.2 3.9 1.7 3.0
4 Manufacturing 329.7 400.0 435.7 506.2 3.9 1.7 3.0
5 Commerce 288.5 350.0 381.2 442.9 3.9 1.7 3.0
6 Transportation 107.2 130.0 141.6 164.5 3.9 1.7 3.0
7 Services 412.1 500.0 544.6 632.7 3.9 1.7 3.0
8 Government 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 gov Government Expenditures
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 0.9 1.0 1.2 1.4 2.4 3.4 3.0
2 Mining and quarrying 0.9 1.0 1.2 1.4 2.4 3.4 3.0
3 Electricity and gas 8.9 10.0 11.8 13.8 2.4 3.4 3.0
4 Manufacturing 71.0 80.0 94.8 110.1 2.4 3.4 3.0
5 Commerce 8.9 10.0 11.8 13.8 2.4 3.4 3.0
6 Transportation 17.8 20.0 23.7 27.5 2.4 3.4 3.0
7 Services 35.5 40.0 47.4 55.1 2.4 3.4 3.0
8 Government 133.2 150.0 177.7 206.5 2.4 3.4 3.0

 inv Investment by supplying industry
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Mining and quarrying 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 Electricity and gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 Manufacturing 147.2 200.0 240.2 257.5 6.1 3.7 1.4
5 Commerce 4.4 6.0 7.2 7.7 6.1 3.7 1.4
6 Transportation 5.9 8.0 9.6 10.3 6.1 3.7 1.4
7 Services 7.4 10.0 12.0 12.9 6.1 3.7 1.4
8 Government 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29

 TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

 Matrix Listing

 Seller: 1 Agriculture
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 17.2 20.0 23.1 26.4 3.1 2.9 2.7
 2 Mining and quarrying 0.9 1.0 1.2 1.3 2.8 2.8 2.8
 4 Manufacturing 84.2 100.0 115.4 131.0 3.4 2.9 2.5
 5 Commerce 4.1 5.0 5.5 6.4 3.8 1.9 3.0
 7 Services 1.7 2.0 2.2 2.6 3.6 2.0 2.9
SUM: Intermediate 108.1 128.0 147.4 167.7 3.4 2.8 2.6
 Sales to Other Final Demand
Personal consumption expenditure 12.4 15.0 16.3 19.0 3.9 1.7 3.0
Government consumption 0.9 1.0 1.2 1.4 2.4 3.4 3.0
Exports 33.1 40.0 45.4 52.8 3.8 2.5 3.0
Imports -13.7 -20.0 -20.8 -24.1 7.6 0.8 3.0
Output 140.7 164.0 189.6 216.7 3.1 2.9 2.7

 Seller: 2 Mining and quarrying
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 3.4 4.0 4.6 5.3 3.1 2.9 2.7
 2 Mining and quarrying 2.6 3.0 3.5 4.0 2.8 2.8 2.8
 3 Electricity and gas 16.7 20.0 22.3 25.7 3.6 2.2 2.9
 4 Manufacturing 12.6 15.0 17.3 19.6 3.4 2.9 2.5
 5 Commerce 1.7 2.0 2.2 2.5 3.8 1.9 3.0
 6 Transportation 0.8 1.0 1.1 1.3 3.7 2.1 2.9
 7 Services 1.7 2.0 2.2 2.6 3.6 2.0 2.9
SUM: Intermediate 39.5 47.0 53.2 61.0 3.5 2.5 2.7
 Sales to Other Final Demand
Personal consumption expenditure 1.6 2.0 2.2 2.5 3.9 1.7 3.0
Government consumption 0.9 1.0 1.2 1.4 2.4 3.4 3.0
Exports 8.3 10.0 11.4 13.2 3.8 2.5 3.0
Imports -6.8 -10.0 -10.4 -12.1 7.6 0.8 3.0
Output 43.5 50.0 57.5 66.1 2.8 2.8 2.8

 Seller: 3 Electricity and gas
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 5.1 6.0 6.9 7.9 3.1 2.9 2.7
 2 Mining and quarrying 3.5 4.0 4.6 5.3 2.8 2.8 2.8
 3 Electricity and gas 8.3 10.0 11.1 12.9 3.6 2.2 2.9
 4 Manufacturing 33.7 40.0 46.2 52.4 3.4 2.9 2.5
 5 Commerce 16.5 20.0 21.9 25.4 3.8 1.9 3.0
 6 Transportation 8.3 10.0 11.1 12.8 3.7 2.1 2.9
 7 Services 20.8 25.0 27.7 32.0 3.6 2.0 2.9
SUM: Intermediate 96.3 115.0 129.6 148.8 3.5 2.4 2.8
 Sales to Other Final Demand
Personal consumption expenditure 65.9 80.0 87.1 101.2 3.9 1.7 3.0
Government consumption 8.9 10.0 11.8 13.8 2.4 3.4 3.0

Perhaps you are wondering how the Compare program knows what elements go into the identity
and what are the names of the sectors and final demands. The answer was given to the program in the
“matrix listing configuration file” whose name, MATLIST.CFG, was given to Compare in the command

30

The MATLIST.CFG File for TINY
Matrix listing identity;out=AM*out+pce+gov+inv+ex+im
Title file name for the rows of out, the lefthand side vector
out; "sectors.ttl"
Title file names for matrix columns
AM; "sectors.ttl"
headers for each term
header for out; "Output"
header for AM*out; "Intermediate"
header for pce; "Personal consumption expenditure"
header for gov; "Government consumption"
header for inv; "Investment"
header for ex; "Exports"
header for im; "Imports"

\matcfg matlist.cfg

 The matrix listing configuration file to produce the matrix listing shown above is in the box below.

In the MATLIST.CFG file, any line beginning with a # is a comment and anything before the
“ ; ” is likewise a comment. The first line gives the crucial identity on which the matrix listing is built.
Recall that Compare has the VAM file and thus knows all the matrix and vector names and dimensions.
It knows how to interpret correctly the expression “AM*out.” The next line gives the file name of the
sector titles for the vector on the left. Then follow the file names for column titles of any matricies for
any matrices appearing in the identity. Here we have only one such matrix. Then come headers for each
section of the table, a section being a vector or a matrix-vector product.

We return now to the TINY.CFG file to explain the last four lines, namely
\center Matrix Listing
\row
\cutoff .001
\matlist 1-8

The \center command centers the following text on the page. The command \row tells Compare to
interpret the identity of the matlist configuration file as an identity in the rows. (The other possibility,
\column, would be used for showing the identity – that holds only in current prices – between the value of
the output of an industry and the sum of its intermediate inputs and value-added components.) The \cutoff
command eliminates the printing of entries which account for less than the specified fraction of the total
of the row or column being listed.

 Finally, the \matlist command instructs Compare to make the matrix listing for the group of
sectors following the command. This is our first encounter with the group concept which is quite useful
in working with multisectoral models. A group is just a collection of integers; it can be specified in a
rather flexible way. Our specification, 1 - 8, means every sector from 1 to 8. An equivalent specification
would be 1 2 3 4 5 6 7 8. If we want just 1 to 3 and 6 to 8, we could write any of following:

1 - 3 6 - 8
1 2 3 6 7 8
1-8 (4 5)

The numbers in the parenthesis are stricken from the list created by the ranges to the left; the parenthesis
can also include ranges.

31

You may now want to ask, “Shouldn’t we connect personal consumption expenditure to labor and
capital income?” Of course we should, but to do so goes beyond what we can do in G alone. It requires
the Interdyme modeling system, which is similar to Build but for multisectoral models. Everything we
have covered in this section is directly relevant to working with Interdyme, but surely you need to pause
here and be sure that you have mastered the large amount of information we have already covered. What
better exercise could there be than to build your own Tiny model, so do exercise 1 for sure and the others
to explore some other ideas.

Exercises
1. Make up the input-output table for your own imaginary economy in 2005. It should have five to

ten sectors, but not eight. Use different sector titles. Make forecasts to 2025. Graph the forecasts
and make tables of output and other vectors. Make a matrix listing.

2. For the economy of our example, what levels of output and use of primary imputs would be
required for the final demand (40, 6, 100, 600, 400, 170, 700, 148)?

3. How much of each of the four factors does one dollar of each of the final demands contain?

4. Was this economy a next exporter or importer of depreciation?

5. What would happen to the prices of each of the eight products if all indirect taxes were
eliminated?

6. Greenhouse gases are emitted by the production of the various sectors of our model economy.
Measured in tons per billion dollars of output, the emission coefficients for the various sectors of
our economy are

2.1 1.3 6.1 1.8 1.0 4.3 0.8 0.0
What is the emission of greenhouse gases per billion dollars of final demand for each of the eight
products? How much is attributable to a billion dollars of each of the types of final demand --
consumption, government, etc.? Was this country a next exporter or importer of greenhouse gas
emissions?

7. The input-output flow table illustrated in the text was for year A. A comparable table for the
same country but for a later year, year B, may be found in the files YBF.DAT, YBX.DAT and
YBV.DAT in the TINY.ZIP file. (You have to fix up the correct commands to get the data into
G.) Price indexes for the eight sectors from year A to B are given by the vector

(1.01 1.10 1.06 1.07 1.15 1.24 1.18 1.20),
while the cost of labor increased twenty percent between the two years. (The price indexes are in
the file PINDEX.DAT.) What has happened between the two years to total labor requirements
for producing one unit of final demand for each product?

8. Return to exercise 7 but now consider that the depreciation and capital income are produced with
material inputs in the proportions given by the investment vector of the year in question. Ignore
the indirect taxes and imports. The reciprocals of the labor requirements are productivity indexes
for the economy in producing the various products supplied to final demand.

Exercises 7 and 8 illustrate correct ways of studying productivity of the economy in making
various final products. As we noted in section 1, it is impossible to know what has happened to

32

productivity in a single industry, because the industry may have reduced its primary inputs while
increasing its intermediate inputs; and the double-deflation method, supposed to handle this
problem, is totally fallacious. The same problem does not arise in looking at total labor required,
indirectly as well as directly, for the production of each unit delivered to final demand, for if the
direct supplier to final demand has shifted required labor to other industries by buying more
intermediate goods, that indirect labor will be automatically picked up. Thus, input-output
calculations may offer a way of studying trends in productivity by product which elude methods
which do not take into account indirect effects.

9. Read the G help file for the lint command. Specify different (but consistent) values of the AM
matrix, value-added coefficient vectors, and final demand vector shares for 1995 and 2010, use
the lint command to interpolate values for other years, and repeat the calculations of the text with
these time-varying coefficients. Consistent here means that the final-demand share columns sum
to 1.0 and the sum of each column of AM plus the sum of the value-added shares in the same
industry equals 1.0. Thus, these calculations are, in essence, in current prices, not constant
prices.

5. Iterative Solutions of Input-output Equations

Before moving on to the Interdyme software, we must explain one of the mathematical techniques it uses
extensively, namely the Seidel iterative solution of the input-output equations. In actual input-output
computations, the Leontief inverse is seldom used, for the equations q = Aq + f or p = pA + v can be
solved directly from the A matrix in about the same time required to multiply (I - A)-1 by f or v. Thus, the
effort of calculating (I - A)-1 would be pointless. Moreover, for large matrices, many cells of A are zero.
This fact can be exploited to reduce the computer storage required for the matrix. But the Leontief
inverse will have non-zeroes nearly everywhere, so there is no way to reduce the space required for it.
Further, changes to A are easily recorded and applied, but a change of one element in A can easily change
all the elements in the inverse. Thus, from the point of view of solving the equations, nothing is gained
and a good deal lost by computing the inverse.

How to solve the equations without the use of the inverse is the subject of this section. We will explain
two methods of successive approximation, for it is worth knowing that both work even though we mainly
use the second. The first, the simple iterative method, takes as a first approximation of q, q0 = f. Then,
given the nth approximation, qn, the next approximation is

qn+1 = Aqn + f. (14.5.1)

If the process converges so that one q is indistinguishable from the previous one, then the vector to which
it has converged is clearly the solution of the equation. In economic terms, we first set the output equal to
the final demands. Then we increase it to allow for the intermediate goods needed by the first
approximation and then incease it again for the intermediate goods needed for the second approximation,
and so on.

It is clear from equation (14.5.1) that if the matrix A is non-negative and f is non-negative, then no
element of q ever becomes negative in the course of the iterations. Thus, the conditions on A that insure
the convergence also insure that a non-negative f leads to a non-negative q. Thus, our inquiry, initially
motivated by considerations of practical computation, also provides an answer to the theoretical question
of whether an economy could exist with a given f and A, for the economic interpretation of Aq is
dependent on all elements of q being non-negative.

33

The second method, the Seidel process, takes the same first approximation, and then, to get the second
approximation, solves first the first equation for q1, given all the other elements of q. Then, using this new
value of q1 and the old values of q3, q4, etc., solve the second equation for q2, and so on. If the A matrix is
triangular, that is, if all the entries above the main diagonal are zero, this method gives the right answer
with one iteration. If it is not triangular, the whole process is repeated until little or no change occurs with
each new iteration. While no actual input-output matrix is ever exactly triangular, the sectors can often be
taken in an order which makes the matrix almost triangular, and this almost-triangularity speeds the
convergence process.

Instead of starting this process with the final demands, it is also possible to start with any guess of q. In
dynamic models, a good guess, namely the previous year's q is available. With a good starting point, four
or five iterations of the Seidel process is usually sufficient to produce adequately accurate solutions. If
twenty percent of the elements of A are non-zero -- a fairly typical situation -- we can make five iterations
of the Seidel process in the same time which would be required to multiply f by the inverse if we had it.

If A is not an input-output matrix but just any old matrix you happen to meet on the street, there is not
much chance that either of these methods will converge and give a solution. What then makes us so sure
that they will converge for an input-output matrix? To discuss convergence, we need to be able to say
how far apart two vectors are. The concept of the norm of a vector gives us that ability. We even need to
be able to say how far a given vector is from the solution when we do not know what the solution is. The
concept of the norm of a matrix enables us to turn that trick. We will now explain these two concepts.

We can say how far apart two vectors are if we can say how "long" a vector x is, that is, how long the line
is which connects x with the origin or zero point. For if represents the length of any vector, then the
length of the difference of two vectors a and b, , serves as a measure of how far apart they are.
How shall we weasure the length of a vector? In two dimensions, the usual lenght of the vector (x1, x2) is

. This concept of length readily generalizes to vectors of any dimension by the definition

. This formula, called the Euclidean length (or norm), gives one possible way of measuring
length.

Why, however, do we bother to take the square root in the Euclidean norm? Because we certainly want
any way of calculating the length of x to be such that multiplying each element of x by a scalar, ,
multiplies the length of x by the absolute value of :

(a)
Other properties which any definition of length should have are

(b)
and

(c)

Property (c) expresses the requirement that the shortest distance between any two points must be a
straight line. Let us denote the points by x and -y. Then we must have

since is the distance from x to 0 (the origin of the vector space) and is the distance for 0 to -
y, while is the distance directly from x to -y. By applying property (a) to the second term on
the right, this requirement may be written more simply as (c) above.

34

Any way of assigning a number, , to each vector, x, of the vector space in such a way that (a), (b), and
(c) are satisfied is called a norm of the space, and is read "the norm of x.". It is quite remarkable that
we can often prove the convergence of a process in terms of a norm without knowing exactly which norm
we are using. Besides the Euclidean norm, there are two more important examples of norms:

the l-norm:

the m-norm:

You may easily verify that each of these norms has the required three properties, though the values they
give as the norm of a given vector may be quite different. For example, the vector (1, -3, 2) has a
Euclidean norm of 3.74, while its l-norm is 6 and its m norm is 3. (The l in l-norm refers to Henri
Lebesgue, a French mathematician of the early years of the twentieth century.)

Exercise 9: Draw the unit circle for each of these three norms. (The unit circle is the locus of points with
norm 1.)

With each of these three norms, if xk, for k = 0, 1, 2, etc., is a sequence of vectors and x* is a vector such
that

then
.

That is, convergence of a sequence of vectors in norm implies element-by-element convergence. This
property is easily seen for the examples of the three norms and is a characteristic of finite dimensional
vector spaces.

What we now want to show is that if q* is a solution of the input-output equations, so that
q* = Aq* + f, (14.5.2)

then the sequence q0, q1, q2, ... defined by

qk+1 = Aqk + f (14.5.3)

converges in norm to q*. Subtracting the first equation, (14.4.2), from the second, (14.4.3), gives

qk+1 - q* = A(qk - q*), k = 1, 2, 3, (14.5.4)

If we have computed to iteration m, then setting k = m in this equation gives

qm+1 - q* = A(qm - q*).

But setting k = m+1 in (1.4.4) gives

qm+2 - q* = A(qm+1 - q*).

35

Together the last two equations imply

qm+2 - q* = A(qm+1 - q*) = A2(qm - q*).

For any positive integer, p, similar reasoning applied p times gives

qm+p - q* = Ap(qm - q*). (14.5.5)

We would like to be able to show that the norm of the vector on the left of (14.5.5) goes to zero as p goes
to infinity. To do so, we need to extend the concept of norm to matrices. We introduce that extension by
a question:

Is there a number, call it , such that
 (14.5.6)

for all x?

There are indeed such numbers, and we call the least of them (for any norm of the vectors) the norm of A.
Intuitively speaking, the norm of the matrix A is the greatest "stretch" which multiplication by A
performs on any vector. For the l-norm and m-norms of the vectors, the corresponding norms of a matrix
are easily computed, as we shall see in a moment. Note that the norms of matrices also have the three
basic properties of the norms of vectors:

a) 2A2 = 0 if and only if A = 0.
b) 28A 2= *8*2A2
c) 2A + B2 #2A2 + 2B2

plus a fourth, which can be easily verified from the definition

d) 2AB2 # 2A22B2.

 First, however, note that we can apply this inequality repeatedly to equation (14.5.5). After applying it p
times, we have

If we can show that for some norm, then
and therefore and the iterative calculations converge to the solution.

The norm of the n-by-n matrix A induced by the m-norm of vectors, and therefore called the m-norm of
the matrix, is

while the norm of A induced by the l-norm of vectors, and therefore called the l-norm of the matrix, is

We shall prove the formula for the l-norm, and leave that for the m-norm as an
exercise. (The Euclidean norm of A is more complicated and not of immediate concern to us. It is the
largest characteristic root of ANA.) For the l-norm, let

36

Then because

On the other hand, let k be the number of the column with the largest sum of absolute values, so that

and then choose a vertor, x, with Then and

Therefore, But we have already shown the opposite inequality, so the only possibility is that

If an input-output A matrix comes from an observed economy with a positive value-added in every
industry, then the column sums of every column are less than 1.0 and therefore the l-norm of the matrix is
less than 1. Thus, returning to the iterative solution of the input-output equations, we see that it will
indeed converge if such is the source of A. Furthermore, in that case, will be non-negative,
because if we start from an f vector which is all zero except for a 1 in some position, the resulting solution
will never have any opportunity to acquire any negative elements in the course of the iterative process.
But the columns of are precisely the solutions of such equations, so the whole matrix is non-
negative.

The norm of the A matrix not only allows us to be sure that the iterative process converges, it also allows
us to set an upper bound on how far we are from the solution at any stage. If, as before, qk indicates
approximation k, then

(14.5.7)

But since

for any positive integer m, subtraction gives

Repeatedly applying this equation gives

37

and substitution in the above equation (1.4.7) gives

Taking the norms of both sides and applying properties c and d of the norms of matrices gives

Now as p 6 4, qk+p 6 q* and the sum of the geometric progression on the right goes to 2A2/(1 - 2A2)
because 2A2 < 1. Thus, when we have reached iteration k, we know that the distance to the true solution
is less than 2qk -qk-1 22A2/(1 - 2A2). In other words, when the differences of the successive
approximations get small, we can be sure that we are close to the true solution.

Now suppose for a moment that A is a matrix in physical units -- with coefficients in units
like kilowatt hours per pound -- so that column sums are meaningless and the l-norm perhaps much
greater than 1. Further let w be an all-positive vector of the hours of labor -- the only primary input -
- required per physical unit of output in each industry. Can an economy exist with this technology?
In other words, if the vector f of final demands is all positive, will the vector of outputs, q, such that q
= Aq + f also be all positive? (Mathematically, it is quite possible for some element of q to be
negative, but it is economic nonsense to run an industry at a negative level. Coal can be converted
into electricity, but all the electricity in the world can’t make a ton of coal.)

The answer to these questions lies in the solution of (where p is a row vector).
If p is all positive, then it can be thought of as a vector of prices (with an hour of work as the
numeraire) at which each process has a positive value added. If we now change the units of
measurement of output of each product to one “hour’s worth,” the coefficient matrix, say A*, in these
new units corresponding to A in the old units will have columns whose sums are each less than 1.
Thus, in these units, the iterative procedure will converge. But the iterative procedure in the original
units (with A) would give successive approximations which differ from those with A* only in their
units. Hence the process would converge in the original units as well and will be non-
negative. Since the Leontief inverse is non-negative, any vector of non-negative final demands can
be met by non-negative levels of output of all the industries.

6. The Seidel Method and Triangulation.

As mentioned at the outset of the previous section, there is a variation of the iterative method, known as
the Seidel method, which converges even faster. In it, one starts with f as the initial guess of the solution
just as in the simple iterative method, but then solves the first equation for the first variable and puts this
value into the guess, then solves the second equation for the second variable and puts that value into the
guess, and so on. Formally,

38

In input-output work, the f vector is generally non-negative as are the elements of the A matrix. Hence, in
the simple iterative method, the approximate solutions form a monotonicly increasing sequence of
vectors. The Seidel approximate solutions are also monotonicly increasing but are always larger than the
corresponding simple iterative solution. Hence, it also converges to the solution and does so faster than
does the simple iterative method.

If all the non-zero elements of A are on or below the main diagonal, A is said to be triangular. If
A is triangular, one pass of the Seidel process is sufficient to reach the exact solution. If A is merely
almost triangular, a few iterations will suffice for a good solution. It general, input-output matrices arrive
from the statistical offices more or less triangulated in exactly the wrong way. They start with
Agriculture first, later Textiles, then Apparel. The right order for a fast Seidel solution is the reverse,
Apparel, Textiles, Agriculture. It is not, however, necessary to physically re-arrange the rows and
columns. All that is necessary is to take the rows in the Seidel operation in the order that would make the
matrix nearly triangular.

For large matrices, however, it may be convenient to have a mechanical way to generate an
approximately triangular order. A simple but effective is to pick as the first industry the one which has
the smallest ratio of intermediate to final demand in its row. Then move into final demand all the inputs
into this industry and again pick from the remaining sectors the one with the lowest ratio of intermediate
to final in its row. Continue until all industries have been selected.

Solving input-output equations by the Seidel method is not only generally much faster than
inverting the I - A matrix by Gauss-Jordan reduction, it may even be faster than multiplying (I - A)-1 by f
when (I - A)-1 is already known. How can that be? It is common for the A matrix to be quite sparse. A
300-by-300 matrix may have some 9,000 non-zero elements, not 90,000. It can be stored in a “packed”
form in which only non-zero elements are stored, and the Seidel algorithm can be written to use this
packed form, so that only as many multiplications and additions are required per iteration as there are
non-zero elements. Thus, if the Seidel process requires less than ten iterations in our example, it will
require less than 90,000 multiplications and additions. The Leontief inverse, however, will generally
have 90,000 non-zeroes and thus multiplying it by f involves exactly 90,000 multiplications and
additions. To economize on both space and solution time, large, sparse matrices are thus best stored in a
packed form; and equations involving them should be solved by the Seidel process without ever inverting
the matrix.

Exercises

10. Using C, Fortran, Basic or any programming language you know, write a program to compute the
triangular order of a matrix. Apply it to the flow matrix used as an example in this chapter.
Write the results as a vector of integers, the first being the number of the equation to be taken
first; the second, that of the equation to be taken second, etc.

11. Write a program to use the Seidel method to solve input-output equations, taking the equations in
the order specified by the vector produced in exercise 7. Apply the program to solve exercise 1
earlier in this chapter. (Bump has a Seidel method. Try to create yours without looking at it.)

7. Introduction to Interdyme

In section 4, we became acquainted with the VAM file and saw that G could do a number of
calculations with the matrices and vectors in these files. By the end, however, we came up against the

39

limit of G by itself. To integrate regression equation and input-output we have to go on to Interdyme.
Interdyme is a collection of C++ programs which make it easy to construct interindustry dynamic models
involving regression equations, input-output computations with matrix algebra, and lag relationships that
provide the dynamics. In this section, we will introduce Interdyme by building a simple Interdyme model
of TINY with just one regression equation and rudimentary institutional accounts. We can conveniently
begin with the most familiar part, the regression equation and the accounting identities.

The regression equation is estimated in G by the following file

catch invtot.cat
save invtot.sav
ti TINY investment equation
dfreq 1
f ub20 = @cum(ub20,1.,.20)
f capstk = @cum(invcum, invtot[1], .20)/ub20
f delGDP = gdp - gdp[1]
con 2000 1.03 = a1
lim 1982 2003
r invtot = ! capstk, delGDP[1], delGDP[2]
save off
gr *
catch off

with the following results

TINY investment equationTINY investment equation
 224

 166

 107

1985 1990 1995 2000
 Predicted Actual

: TINY investment equation
 SEE = 13.51 RSQ = 0.8360 RHO = 0.60 Obser = 22 from 1982.000
 SEE+1 = 11.45 RBSQ = 0.8187 DW = 0.79 DoFree = 19 to 2003.000
 MAPE = 7.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 invtot - - - - - - - - - - - - - - - - - 161.06 - - -
 1 capstk 0.99562 402.8 0.89 1.52 144.50
 2 delGDP[1] 0.35900 17.0 0.11 1.00 47.67 0.231
 3 delGDP[2] 0.03007 0.1 0.01 1.00 47.06 0.020

40

The constraint has produced a coefficient on the capstk term very close to 1.0, so capital wearing out will
be replace replaced dollar for dollar. The current year value of delGDP was omitted both to avoid
sinultaneous equation bias and to speed convergence of the model.

The national accounts are given by the file ACCOUNT.SAV as follows:

The Accountant for Tiny
Personal interest and dividends
fex pintdivrat = pintdiv/capinc
f pintdiv = pintdivrat*capinc
Personal income
f pi = labinc + pintdiv + pgovtran
Personal taxes
fex ptaxrat = ptax/pi
f ptax = ptaxrat*pi
Personal disposable income
f pdisinc = pi - ptax
Personal saving
fex psavrat = psav/pdisinc
f psav = psavrat*pdisinc
f pcetot = pdisinc - psav
Government income
f ginc = indtax + ptax
Government saving
f gsav = ginc - govtot - pgovtran
Business saving
f bsav = capinc - pintdiv - invtot
RoW saving
f RoWsav = imtot - extot

All of this file should be familiar from the Master file of macromodels and the previous discussion of the
Institutional accounts in this chapter.

 Both of these .SAV files will be passed through the IdBuild program, the Interdyme version of
the Build program. Running and explaining IdBuild reverse the old saying “Easier said than done.” It is
much easier to run IdBuild than to explain what all it does. Basically, IdBuild converts the G-estimated
parts of the model into C++ code. Clicking Model | IdBuild not only runs IdBuild but also compiles the
C++ code it has written and combines it with the other C++ modules of the Interdyme system to make an
executable program. Thus, running IdBuild just requires two mouse clicks. Recounting what it does will
take us a little longer, but some understanding of the results is necessary to play your creative role in
writing MODEL.CPP that pulls together the pieces of the Interdyme system.

First, we must note that IdBuild is not so omniscient as Build and needs our help on one point. Build
knows about all the variables and equations in the macromodel it is building. Therefore, it can arrange
for getting all of them into the model, can figure out which ones are endogenous, and can write a file for
making quick projections of all those which remain exogenous. Because part of an Interdyme model
may be written directly in C++ without going through IdBuild, IdBuild does not necessarily know about
all the variables in the model and does not know about the possible definition of some variables in the
C++ code. To inform IdBuild of the variables which are used in the C++ code or otherwise needed in the
data bank produced by IdBuild but not used in any of the .SAV files processed by IdBuild is the first
function of a file called PSEUDO.SAV. In TINY, there is only one variable of this sort, timet, which is
used in the regressions for projecting exogenous variables. The second function of PSEUDO.SAV is to

41

tell IdBuild which variables which will be defined in the C++ code and therefore do not need regressions
in EXOGALL.REG for making up quick, mechanical projections. In TINY, there are five such variables,
as we shall see below, namely, gdp, deprec, labinc, capinc, and indtax. Here is PSEUDO.SAV for
TINY:

Time
f timet = timet
GDP Gross domestic product
f gdp = gdp
Depreciation income
f deprec = deprec
Capital income
f capinc = capinc
Labor income
f labinc = labinc
Indirect taxes
f indtax = indtax

With these files in place, we are ready to look at the MASTER file. It is just the following:

Master File for TINY
iadd invtot.sav
iadd account.sav
iadd pseudo.sav
end

The only commands in the Master file for IdBuild are comments, iadd commands to bring in the various
.SAV files, and the end command to signal the end of the commands.

 IdBuild requires a configuration file called BUILD.CFG; in it, I recommend that you make the
name of the workspace bank HIST, which is the way the file is supplied.

Once these files are ready, IdBuild can then be run. I would suggest that, for the moment, you do
so from within G by the command

dos c:\pdg\idbuild master

Later, when you have written the MODEL.CPP file, you can run IdBuild and compile and link
MODEL.CPP and other parts of the Interdyme program by clicking Model | IdBuild. We will get to that
point soon. Right now we should have a quick look at the output of IdBuild. It is reminiscent of that of
Build. The EXOGALL.REG file, for example, begins

bank hist b
mode f
tdates <StartType> <EndType>
limits <StartReg> <EndReg> <EndForecast>
ti govtot
r b.govtot = timet
gr *
f govtot = depvar
save govtot.xog
sty govtot
save off
...

42

As with a macromodel, areas marked with the <...> in the third and fourth lines must be replaced by dates
and the file then passed through G to generate for each variable a .XOG file with exogenous forecast for
each of the exogenous variables. The file RUN.XOG will contain an add command for each of these
files. For TINY, RUN.XOG is

dos copy hist.* base.*
wsb base
add govtot.xog
add extot.xog
add imtot.xog
add pgovtran.xog
add pintdivrat.xog
add ptaxrat.xog
add psavrat.xog
wsb ws

Note the effect of the first two and the last commands when executed in G. As noted above, HIST is the
recommended name (specified in BUILD.CFG) for the workspace bank generated by IdBuild. The first
command above copies this G bank to a G bank with the name BASE. The second line makes this bank
the workspace bank of G. The subsequent lines add the files with the projections of all the exogenous
variables. These projections go into the G workspace bank, namely, into BASE. The last command
makes WS the workspace bank of G and thereby frees the BASE bank. As in the case of macromodels,
you should check the mechanical exogenous projections, shape them to your preferences, and put revised
versions into files with the extension .XG, and make a revised RUN.XOG, calling it something like
BASE.XG. For the moment, we will let well enough alone and just use RUN.XOG with the mechanically
generated projections.

Like Build, IdBuild also writes RUN.GR, a command file for G which will graph all timeseries
variables handeled through IdBuild.

Running IdBuild generates a number of other files to facilitate the writing of the C++ program to
run the model. One of these is TSERIES.INC as follows:

GLOBAL Tseries timet, invtot, pcetot, gdp, labinc, capinc, deprec, indtax,
pintdiv, pi, ptax, pdisinc, psav, gsav, bsav, RoWsav,
netim, govtot, extot, imtot, pgovtran, ub20, invcum, capstk,
delGDP, pintdivrat, ptaxrat, psavrat, ginc;

This is just a listing of all the timeseries variables in the model in a format suitable for use in the model.

Like Build, IdBuild also writes a file of C++ code called HEART.CPP. It is shown in the box
below, in somewhat abbreviated form, for TINY. Wherever four dots occur, thus , lines have been
omitted which just repeat for the other variables listed above in TSERIES.INC the same function above
and below the four dots for invtot and ginc. The Master file had the two following lines:

iadd invtot.sav
iadd account.sav

Each of these resulted in a corresponding function of C++ code in the HEART.CPP file, namely invtotf()
and accountf(), respectively. These are functions which can be called from MODEL.CPP, the user-
written part of Interdyme systerm. The function name is created by adding an f to the end of the name of
the file. A glance at accountf() shows that it is just an adaptation for C++ of the G commands in

43

ACCOUNT.SAV. The function invtotf() is the same for INVTOT.SAV with the extra feature that the
numerical values of the regression coefficients have been stripped off and put in a separate file,
HEART.DAT, which will automatically be read to supply values to the coef variable. The regression
coefficients are treated this way so that they can potentially be varied in the course of optimizing the fit of
the model, just as was done with macromodels. IdBuild recognizes the special function of the line

iadd pseudo.sav
in the MASTER file and does not generate a corresponding function in HEART.CPP.

Also in the HEART.CPP file are the C++ functions tserin() and uptseries(). The first of these
reads in the historical values and exogenous projections of the time series variables; it is executed at the
beginning of any run of the model. The second, uptseries(), is called at the beginning of calculation of
the forecast for any year. It looks at the starting value of each of the time series variables and if it is
-.000001, the value G uses to indicate a missing number, then it replaces that missing value with the value
of the series in the previous year. For example, in TINY, no exogenous projection is made for Personal
income, since it is endogenous. Thus, its starting value in 2004 would be -.000001. If the model starts
with this very bad guess of Personal income, it eventually converges to the correct value, but it will
converge much faster if it starts with a good guess, and the previous year’s value is usually a pretty good
guess. Note that exogenously projected values will not be affected, because they will not be -.000001.

A final file created by IdBuild in CALLALL.CPP , a bit of C++ code which calls all of the
functions written by IdBuild in the HEART.CPP file. It is used in conjunction with managing rho
adjustments as will be explained below in conjunction with the MODEL.CPP file. Here is the important
part of CALLALL.CPP for TINY.

void callall()
{
invtotf();
accountf();
}

44

TINY’S HEART.CPP FILE
#include "dymesys.h"
#include "heart.h"
extern short t;
extern float **coef;
FILE *fmatrix;
float depend;
#include "tseries.inc"
/* end of standard prolog */
void invtotf()
{
/* TINY investment equation */
 ub20[t]=cum(ub20,1.,.20);
 capstk[t]=cum(invcum, invtot[t-1],.20)/ ub20[t];
 delGDP[t]= gdp[t]- gdp[t-1];
/* invtot */ depend = coef[0][0]*capstk[t]+coef[0][1]*delGDP[t-1]+coef[0][2]*delGDP[t-2];
invtot.modify(depend);
}
void accountf()
{
 pintdiv[t]= pintdivrat[t]* capinc[t];
 pi[t]= labinc[t]+ pintdiv[t]+ pgovtran[t];
 ptax[t]= ptaxrat[t]* pi[t];
 pdisinc[t]= pi[t]- ptax[t];
 psav[t]= psavrat[t]* pdisinc[t];
 pcetot[t]= pdisinc[t]- psav[t];
 ginc[t]= indtax[t]+ ptax[t];
 gsav[t]= ginc[t]- govtot[t]- pgovtran[t];
 bsav[t]= capinc[t]- pintdiv[t]- invtot[t];
 RoWsav[t]= imtot[t]- extot[t];
}

void tserin()
{
timet.in("timet");
invtot.in("invtot");
....
ginc.in("ginc");
}
void uptseries()
{
//Function to replace missing values or macro vrariable with lagged values.
if(timet[t]< .0000009 && timet[t]> -.0000011) timet[t] = timet[t-1];
if(invtot[t]< .0000009 && invtot[t]> -.0000011) invtot[t] = invtot[t-1];
....
if(ginc[t]< .0000009 && ginc[t]> -.0000011) ginc[t] = ginc[t-1];
}

45

So far, there has been a lot of similarity between building Interdyme models and building
macromodels with G and Build. Now we venture into new territory with the writing of the MODEL.CPP
file. The box below shows the part of this file that distinguishes TINY from any other model built with
Interdyme. I have more than once encountered the reaction, “C++ is hard; I don’t have time to learn it, so
I’ll just stay with the models I can build in Excel.” It is true that some of the “far out” tricks of C++ can
be rather arcane, but the tricky part of C++ has been done for you in Interdyme. The code that you will
need to write is in no way more complicated than the simplest level of Basic, Fortran, or C – and a lot
simpler than writing VBA macros for Excel. But with the Interdyme infrastructure, you can easily write
the code for the matrix and vector operations that are essential for working with input-output models but
are tedious to program in those simpler languages.

The box below shows the C++ code that defines TINY. First of all, you need to know a few
things about C++ grammar. Anything following a // on the same line is a comment, useful for humans
but ignored by the computer. A comment extending over more than one line is begun with a /* and ended
with a */. Every C++ statement ends with a semicolon. More than one statement can be put on one line
or a single statement can be broken onto two or more lines between words. C and C++ are case sensitive:
x is not the same as X. For any variable x, x++ means “add 1 to x.” Before a variable name, like
Iteration or oldinvtot, can be used, we must declare what kind of variable it is by statements like

int Iteration; // declare Iteration to be an integer
float oldinvtot; //declare oldinvtot to be a floating point, real number

A group of statements, indicated by enclosing the statements in curly braces like these { }, can be
used anywhere a single statement could be used, notably in for, do, while, if, else, and else if
constructions. The for loop that fills most of the box of TINY code is a good illustration of this point. It
looks something like this:

for (t = godate; t<= stopdate; t++) {

 }

where the represents many lines of code. The command means: start t off equal to godate, which other
coding part of the Interdyme system will have made the beginning year of the run you are making,
something like 1995, then do all the statements represented by the with that value of t, then increment t
by 1 – that’s the t++ near the end of the line – and do all the statements represented by the with that
value of t, and keep doing all this as long as t is less than or equal to stopdate, a number that other parts of
Interdyme will have made equal to the last year of your run, something like 2010. Now the generic form
of the for loop is written

for (initialization, condition, increment) statement

It starts off one or more variables in the initialization, checks that the condition is true and, if it is,
executes the statement, then revises the variable that was initialized as prescribed by the increment,
checks the condition, and executes the statement, and so on as long as the condition is true. When the
condition is no longer true, control passes to the next statement below the for loop. How the
initialization, condition, and increment work in the example is clear enough, but our particular point here
is that the statement executed is the compound statement composed of all the simple statements enclosed
by the braces that open right after the closing parenthesis of the for statement. I should also mention that
indentation in C and C++ is solely for the benefit of the human reader; it doesn’t matter to the computer.

46

The construction
if (condition) statement
else if (condition) statement
else statement

works in an entirely similar way. Any number of else if lines may be used or they and the else line may
be absent altogether. In writing the conditions, any of the following operators may be used:

== is equal to
!= not equal
< is less than
> is greater than
>= is greater than or equal
<= is less than or equal
| | or
&& and
! not

Besides the for keyword, the keywords while and do can also be used to write loops. The general form
of the while is

while(condition) statement
which executes the statement as long as the condition is true. There is an example in the TINY code.
For the do keyword, the syntax is

do statement while (condition);
The statement executes until the condition becomes false. Since the conditon is tested after each pass
through the loop, the loop will execute at least once. In practice, the do loop is seldom used.

Finally, we need to mention three statements for jumping about in the code. The most commonly
used is break, which breaks out of the innermost loop where it is found. There will be an example in the
TINY code below. The continue statement shifts control to the end of the innermost loop, while

goto label;
sends control to the label. The label is a line with one word ending in a colon, like top: or finish: . In
good C++ style, the goto is seldom used; but it is useful when breaking out of a deep nest of loops. (If
you have ever used Fortran, please note that the function of the C continue statement is totally unlike
that of the Fortran CONTINUE statement.)

That is about all you need to know about C++ in general to use Interdyme. There are, however,
some Interdyme-specific functions and variables you need to know about. The first of these is the
variable MaxFlag; it is a single letter, either y or n for “yes” or “no”. It will be y only if the user has
specified that we are to do an optimization. We will assume that it is n. In that case, the printf() command
writes to the screen the year which is about to be computed. (For the full capabilities of printf() or the
C++ alternative keyword out, you can consult the help file of your C++ compiler.) The program then
calls the Interdyme functions load(t) to load into the computer’s random access memory (RAM) from the
computer’s hard disk the starting values for year t of all vectors and matrices in the VAM file on the hard
disk. At the bottom of the for loop, the store(t) functions stores their newly computed values back to the
VAM file. The call to the function uptseries() checks all the timeseries variables, and where it finds a
value missing in period t it inserts the value of that timeseries from period the previous period. As noted
above, this replacement gets the iterative process of solution off to a good start.

47

The Core of TINY’s MODEL.CPP File

for (t = godate; t<= stopdate; t++) {
 if (MaxFlag == 'n') printf("%d ",t);
 // Load all vectors and matrices.
 load(t);
 uptseries();
 // Start of code particular to TINY:
 Iteration = 0;
 // The loop for convergence on pcetot and invtot.
 while(Iteration < 20){
 Iteration++;

oldinvtot = invtot[t]; oldpcetot = pcetot[t];
if(t>= MacEqStartDate)

 invtotf();
inv = invtot[t]*invc; pce = pcetot[t]*pcec;
gov = govtot[t]*govc; im = imtot[t]*imc;
ex = extot[t]*exc;
// Add up final demand vectors
fd = pce + gov + inv + ex + im;
// Solve input-output equations by Seidel method
Seidel(AM, out, fd, triang, toler);
// Compute value-added vectors
// The Interdyme ebemul() function does element-by-element multiplication
dep = ebemul(depc,out); lab = ebemul(labc,out);

 cap = ebemul(capc,out); ind = ebemul(indc,out);
// The Accountant for Tiny
gdp[t] = fd.sum();
if(t>MacEqStartDate){
 deprec[t] = dep.sum(); labinc[t] = lab.sum();
 capinc[t] = cap.sum(); indtax[t] = ind.sum();

 accountf();
 }
// Form the convergence test
invdif = fabs(invtot[t] - oldinvtot);
pcedif = fabs(pcetot[t]- oldpcetot);
printf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\n",Iteration,
 pcetot[t],pcedif,invdif);
if(invdif < .5 && pcedif < .5) break;
}

 // End of code particular to TINY
 // Here when both Investment and PCE have converged
 // Standard end of the spin() function:
 if(MaxFlag == 'y')
 shiftback(t);
 else{
 // Store the values of vectors and matrices for this period.
 store(t);
 printf("\n");
 }
 }

48

At this point, we begin the code that is particular to TINY. Through the general Interdyme
structure, the person running the model provides a value for the variable MacEqStartDate, the date at
which the macroequations of the model begin to be computed. TINY has only one macroequation,
namely that for invtot(t), total investment. Since we have known accounts up through 2003, we will set
MacEqStartDate equal to 2003. (How we do so, we will see shortly.) Prior to this date, the Interdyme
model for TINY produces the same results as did the G-only model. In 2003, only invtot and gdp may be
different. Other macro variables are not affected because the national income accountant function,
accountf(), is not called until the next year. In practice, we will normally be setting the rho-adjustment
factor for all of the macro variable regression equations in this year – how that is done will be explained
below – so even those variables will not differ from historical values in this last year of historical
macroeconomic data. The fun begins in the next year.

Once t has passed the MacEqStartDate, the final demands determine output (via the Seidel input-
output calculations), but output determines value-added and value-added determines (via the institutional
accounts) Personal income, which determines total Personal consumption expenditure, which is one of the
final demands. We solve this circularity, just as we did in macromodels, by iteration. That is, we start off
with one set of final demand totals – pcetot[t], invtot[t], govtot[t], extot[t], imtot[t] – and compute
along until will have calculated new values. We then compare the new values with the old, and if the
differences exceed the tolerances we set, we go back to compute, with the new values of the variables,
final demands, outputs, value added, and the variables just listed, and repeat the process until convergence
is reached or the iteration counter exceeds 20, whereupon we go on to the next year. Since govtot[t],
extot[t], imtot[t] are exogenous, they will not vary from iteration to iteration, so only the values of
pcetot[t] and invtot[t] are checked for convergence. In fact, the form of the regression equation we
estimated has no dependence of invtot[t] on variables in period t, so we do not for the present model need
to check invtot[t], but we leave the check because in principle there could be such a dependency. The
lines of code that drive the looping process are:

 Iteration = 0;
 // The loop for convergence on pcetot and invtot.
 while(Iteration < 20){
 Iteration++;

oldinvtot = invtot[t]; oldpcetot = pcetot[t];

/***
 The substance of the model, which follows here, has been cut out to
 emphasize the testing of convergence. This substance computes new
 values of invtot[t] and pcetot[t].
 ***/

// Form the convergence test
invdif = fabs(invtot[t] - oldinvtot);
pcedif = fabs(pcetot[t]- oldpcetot);
printf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\n",Iteration,
 pcetot[t],pcedif,invdif);
if(invdif < .5 && pcedif < .5) break;
}

The first line initializes an integer, Iteration, to 0. The
while(Iteration < 20){

line sets up the loop that iteratively solves the circularity just explained. The first line within the loop
increments Iteration by one, so we see immediately that this loop will not be executed more than 20
times. We then store away the starting values of invtot[t] and pcetot[t]. Then we execute the substance
of the model, which results in changing these values. When that work is complete, we use the standard

49

C++ function fabs() to take the absolute value of the difference between the previous and the new values
of these two variables. If both of those values are less than .5, we break out of the while loop. More
complicated models may have more complicated convergence tests, but TINY’s example is pretty typical.
Once convergence has been reached, the main thing to be done is to call store(t), which stores back to the
computer’s hard disk this period’s values of the vectors and matrices.

With the iterative solution of the circularity understood, we turn to the the substance of the
model. It is easily followed in the code in the box below. The Interdyme code, nestled away in other
modules (.CPP files) where you do not need to bother reading it, defines what a Vector and Matrix are
and instructs the computer in how to read them, add or subtract them, multiply a Matrix by a Vector, sum
up the elements of a Vector, and do both inner-product and element-by-element multiplication of two
Vectors. Let me emphasize: Matrix and Vector are not general C++ features; it is the other modules of
Interdyme working in the background that give you these handy tools for writing the code for input-
output models. In fact, though we have used here only vector addition, Interdyme has a rather complete
library of matrix and vector routines.

 The Interdyme function Seidel(AM, out, fd, triang, toler) solves by the Seidel method the
equation

out = AM*out + fd
using the order of equations specified by the vector triang and with the convergence tolerance specified
by toler. The value of integer vector, or ivector, is given by the file TRIANG.IV. For TINY, its value is

 8 7 5 6 4 3 1 2 .
Th Interdyme function ebemul() does an element-by-element multiplication of two Vectors and gives a
Vector as its output. The floating point absolute value function, fabs(), is a standard C++ function.

With the file MODEL.CPP written, running the model is easy. In G, click Model | IdBuild. This
one click will not only run IdBuild, which writes HEART.CPP, EXOGALL.REG and RUN.XOG, but
also compiles MODEL.CPP, HEART.CPP and any other modules that need to be comiled, links them
together and produces the DYME.EXE, the executable file for the program. As described above, you
need to use EXOGALL.REG to make projections of the exogenous variables, exactly as with macro
models. When the .XOG files and RUN.XOG are ready, you run the Interdyme model by clicking
Model | Run Dyme . That brings up a window which you should fill out as shown below. (When you
have done this once, you can get the information back by clicking the “Load from file” bar and selecting
dyme.cfg.) Note that the “Start date” and “End date” boxes provide godate and stopdate variables of the
C++ code, while the “Macro Eq Start Date” box provides the MacEqStartDate variable. Putting the dot
in the “Deterministic” radio button in the “Type of Solution” panel on the right will set the MaxFlag
variable to n, so that no optimization is attempted. When all is ready, click the OK button. G will then
write the DYME.CFG file and execute the command-line command

dyme dyme.cfg
Results flash past quickly in the black screen. They are of interest only if you are having problems or
want to see how rapidly the model converges. For the latter purpose, here is what we appears on the
screen in the first year when the macro equations are turned on:

50

2004
Seidel iterations: 4 Iter 1 pce = 1544.4 pcedif = 29.39 invdif = 2.67
Seidel iterations: 3 Iter 2 pce = 1563.5 pcedif = 19.08 invdif = 0.00
Seidel iterations: 2 Iter 3 pce = 1575.8 pcedif = 12.32 invdif = 0.00
Seidel iterations: 2 Iter 4 pce = 1583.8 pcedif = 8.02 invdif = 0.00
Seidel iterations: 2 Iter 5 pce = 1589.0 pcedif = 5.21 invdif = 0.00
Seidel iterations: 2 Iter 6 pce = 1592.4 pcedif = 3.39 invdif = 0.00
Seidel iterations: 2 Iter 7 pce = 1594.6 pcedif = 2.21 invdif = 0.00
Seidel iterations: 1 Iter 8 pce = 1595.9 pcedif = 1.32 invdif = 0.00
Seidel iterations: 1 Iter 9 pce = 1596.8 pcedif = 0.90 invdif = 0.00
Seidel iterations: 1 Iter 10 pce = 1597.4 pcedif = 0.61 invdif = 0.00
Seidel iterations: 1 Iter 11 pce = 1597.9 pcedif = 0.41 invdif = 0.00

The Seidel iteration count is printed by the Seidel routine. It indicates that generally very few iterations
are needed. The PCE convergence, on the other hand, is rather slow; a faster converging algorithm could
be easily devised, but we will not pursue that direction at present.

Here are the graphs of total investment and the output of manufacturing for this simplest version
of the TINY Interdyme model.

51

USER.H for the TINY I Model

// From DYME.CFG and opening screen:
GLOBAL char RunTitle[80],CfgFileName[80],VamFileName[80],GbankName[80],
 VecFixFileName[80],MacFixFileName[80];

GLOBAL char* outfix; // Determines how Seidel will determine output

// Vector declaration:
 GLOBAL Vector out ,pce, gov, inv, ex, im, fd, dep, depc, lab, labc, cap, capc,
 ind ,indc ,pcec, invc ,govc ,exc ,imc, x, y;

// Matrix declaration
 GLOBAL Matrix AM;

 GLOBAL IVector triang;

 Investment Investment
236.3

200.6

164.9

1995 2000 2005 2010
 c.invtot

4 Manufacturing4 Manufacturing
 Output and Final demand

 899

 450

 0

1995 2000 2005 2010
 b.out4 b.fd4

The results are clearly looking more like model results than they did with all demand exogenous. But
before we go further, it is time for a few exercises.

Exercises
1. Make alternative forecasts for some of the exogenous variables in TINY, run the model with

them, graph the results, and show them in tables.

2. Estimate a regression equation for total imports as a function GDP, put it into the model, run the
model and compare graphically the results with those without your function.

Before you can build a TINY-like model for your own imaginary or real economy, we have to
deal with one more basic question: How is the Interdyme program connected with the VAM file? How
does it know, for example, that there are vectors in TINY’s VAM file named fd, pce, gov, ind and so on?
The answer is that user has to tell it the names of these vectors and matrices; it, however, will figure out
from the VAM file their dimension. This identification has to be done in two steps. First, there is a file
called USER.H; the one for TINY is shown in the box below.

52

All the variables declared in USER.H are “global,” C - jargon for variables which can be accessed
from anywhere in the program. This fact is indicated by the word GLOBAL in front of these
variables. To explain exactly what is going on here requires a digression which you can skip if you
are familiar with C or don’t want to bother with the details of exactly how this GLOBAL word
works, so I will put it in slightly smaller type.

Unlike Basic and Fortran, C and C++ are strictly “typed” languages. That is, the nature of every
variable must be declared before it can be used. Typical declarations are:

char sex;
int zip;
float height, weight;
char name[40];

The variable sex is a single character, presumably M or F; the variable zip is an integer, something like 20742;
height and weight are floating point numbers, that is, numbers that potentially have a fractional component like
72.5 or 217.8. The variable name is a string of up to 40 characters, something like “Thomas”. If a variable is
declared inside a function, it is local to that function. Other functions know nothing about it. But a variable
declared outside of all functions, typically near the top of a file containing C code, is global and can be
accessed by all functions in that file. A large program such as Interdyme usually consists of a number of files
with names ending in .cpp; each of these files is called a module, and is compiled separately. If some variable,
say name, is to be accessed in several different modules, then it must be declared globally in all the modules
where it is accessed. But one and only one of the modules should actually make space for it. Which one? To
answer this question, the program should mark all the declarations which are not to make space as extern, like
this:

extern char name[40];

In one and only one module should appear the simple declaration

char name[40];

That is the module where the space is made. When the compiled modules are “linked” to form one whole
executable program, the references to the variable in all the modules where it was external are made to point to
the space allocated by the one module where it was not external.

It could potentially be quite a nuisance to remember to mark all but one declaration as extern. That is
where the word “GLOBAL” comes in handy. It is not a standard C keyword but is used in Interdyme, G and
many other programs. The declarations of all global variables are put into “header” files like USER.H, and
they are all marked GLOBAL. These header files are then “included” into all the modules where they are
relevant by a compiler directive like

#include “user.h”

In all but one module, this directive is preceded by another:

#define GLOBAL extern

In these modules, the compiler will replace “GLOBAL” by “extern” before compiling. In that one and only
one other module, namely dyme.cpp in Interdyme, the “include” is preceded by

#define GLOBAL

53

which defines GLOBAL to be nothing, so that in this module the “extern” is omitted and space is made for the
global variables.

When a vector or matrix is declared locally, it can be fully “constructed”, that is, space allocated
for its elements. But there is a problem with declaring an object like a vector globally; since the
declaration is outside of any function, no computing can be done. But to find out how much space to
allocate for the array of numbers in the vector, the VAM file has to be read, but reading the VAM file is
computing, so what is to be done? The answer is that once computing has begun, we must resize all the
global matrices and vectors. That is, we must read the VAM file, find out how big the matrix or vector is,
grab enough memory to hold it, and stick the pointer to that memory into the space saved for the pointer
by the global declaration.

That may seem complicated to understand, but it is easy to do. Look at MODEL.CPP for TINY
with the G or other text editor. The lines concerned with resizing are the following:

 // Resize Vectors
 out.r("out"); pce.r("pce"); gov.r("gov");
 inv.r("inv"); ex.r("ex"); im.r("im"); fd.r("fd");
 dep.r("dep"); lab.r("lab"); cap.r("cap"); ind.r("ind");
 depc.r("depc"); labc.r("labc"); capc.r("capc"); indc.r("indc");
 pcec.r("pcec"); invc.r("invc"); govc.r("govc"); exc.r("exc");
 imc.r("imc"); x.r("x"); y.r("y");

 // Resize Matrices
 AM.r("AM");

The “resize” function or method is abbreviated to just .r . The argument to the resize function is the name
of the vector or matrix in the VAM file. It may occur to you, as it has to others, that preparing these lines
for USER.H and MODEL.CPP from the VAM.CFG is a lot of rather mechanical, error-prone work. If
so, you will be pleased to learn that way back when you gave G the command

vamcreate vam.cfg hist

it also wrote two files, VAM.GLB and VAM.RSZ, as follows

The VAM.GLB file:
GLOBAL Vector out, pce, gov, inv, ex, im, fd,
 dep, lab, cap, ind, depc, labc, capc,
 indc, pcec, invc, govc, exc, imc, x,
 y;
GLOBAL Matrix FM, AM, LINV;
GLOBAL Matrix OUTlag;

The VAM.RSZ file
out.r("out"); pce.r("pce"); gov.r("gov");
inv.r("inv"); ex.r("ex"); im.r("im"); fd.r("fd");
dep.r("dep"); lab.r("lab"); cap.r("cap"); ind.r("ind");
depc.r("depc"); labc.r("labc"); capc.r("capc"); indc.r("indc");
pcec.r("pcec"); invc.r("invc"); govc.r("govc"); exc.r("exc");
imc.r("imc"); x.r("x"); y.r("y");
FM.r("FM"); AM.r("AM"); LINV.r("LINV");
OUTlag.r("out");

54

They are in the \tiny\model directory. You will notice a striking similarity to the corresponding
portions of the USER.H and MODEL.CPP files; really all you have to do is bring these two files
written by G into USER.H and MODEL.CPP , respectively, with the G or other text editor. For
the model, I removed the FM and LINV matrices, for they will not be used in the Interdyme
model. Likewise, I removed OUTlag matrix, which is used to store the lagged values of the out
vector, because the lagged values are not yet in use.

The rest of the loop() function should be regarded as standard which the user of Interdyme
should have no need to change. The spin() function, which we have looked at in detail, is where
the changes have to be made for different models.

Exercise

3. Build a TINY- like model for your imaginary economy or for a real economy for which
you have data readily available.

8. Matrix Tools in Interdyme

Here is a quick overview of the actions, operators, and functions available in Interdyme.
Some of them we have seen, but others were not needed in the TINY example. You need not
learn the exact syntax of each of them; just make a mental note of the possibilities.

If A is a Matrix or Vector and k is a scalar (a float in C terms), then
k*A multiplies each element of A by k.
A/k divides each element of A by k.

If A and B are both Matrices or both Vectors of the same dimension, then
A + B gives the matrix or vector sum
A - B gives the matrix or vector difference
ebemul(A,B) gives the element-by-element product
ebediv(A,B) gives the element-by-element quotient, the elements of A being

divided by the corresponding elements of B. If, an element of B is
zero, the corresponding element of A is returned in that position.

If A has the same number of columns as B has rows, then
A*B gives the matrix product.

If A and B have the same number of columns, then
A/B gives the same thing as ~A*B, that is, the transpose of A multiplied by B,

but without actually forming the transpose of A. (Think of the / as being a
' to denote transposing the matrix.)

Interdyme understands parentheses; if all the dimensions are appropriate, the following is an
acceptable statement:

A =k* (B+C+D)*(E + F + G*(H+I));

55

If x and y are both Vectors with the same number of elements:
dot(x,y) gives the inner product as a float.

If A is a Matrix and x a Vector with the same number of elements as A has columns,
A%x gives the "coefficient" Matrix obtained by dividing each column of A by the

corresponding element of x.

For a Matrix A, Vector v, float z, and int k,
v.set(z) sets all elements of Vector v to z.
A.set(z) sets all elements of Matrix A to z.
pulloutcol(v, A, k) pulls column k of A into v.
putincol(v, A, k) puts v into column k of A.
pulloutrow(v, A, k) pulls row k of A into v.
putinrow(v, A, k) puts v in row k of A.
v = colsum(A) puts the column sums of A into the vector v.
v = rowsum(A) puts the row sums of A into the vector v.
z = v.sum() puts the sum of the elements of v into z.
v.First() gives the number of the first row of v if v is column and vice versa.

If A is a square, non-singular matrix,
!A gives the inverse of A.
A.invert(i,j) transforms A into its inverse by Gauss-Jordan pivoting. The pivot

operations start in row i and stop when the pivot has been in row j. If
these arguments are omitted, the pivoting starts in the first row and
continues through the last, to produce the true inverse.

The difference here is that !A does not change A but creates a new matrix for the inverse while
A.invert() transforms A into its inverse. Thus, if memory space is scarce, the invert action may
be preferable. The algorithm in both cases is Gauss-Jordan pivoting with no niceties. Don't trust
it if your matrix poses any problems for inversion.

If A a is either a Vector or Matrix object, then

~A gives the transpose of A.
A.rows() gives the number of rows as an integer.
A.columns() gives the number of columns as an integer.
A.firstrow() gives the number of the first row as an integer.
A.lastrow() gives the number of the last row as an integer.
A.firstcolumn() gives the number of the first column as an integer.
A.lastcolumn() gives the number of the last column as an integer.

If A is a square Matrix and q and f are Vectors of the appropriate dimension, the equation
q = Aq +f

can be solved by the Seidel iterative method (if it converges) by the function
Seidel(A, q, f, triang, toler)

56

where triang is an array of integers giving the order in which the rows of A should be selected in
the Seidel process, and toler is a float giving the tolerance which is accepted in the iterative
solution. Similarly, the equation

p = pA + v
can be solved by PSeidel(A, p, v, triang, toler);

If you need a “scratch” Matrix A or Vector B is not in the VAM file, you can declare it locally in
the function where it is needed by:

Matrix A(n,m);
Vector B(n);

were n is the number of rows and m is the number of columns.

In the process of debugging a program, it is sometimes useful to display a Matrix or Vector A on
the screen. To do so, use

A.Display("message", fieldwidth, decimals);
To write a Matrix A to a file use

writemat(A, filename,fieldwidth, decimals);
To write a Vector A to a file use

writevec(A, filename, fieldwidth, decimals);

For completeness, we mention a function which will be explained in following sections.
A Matrix A can be balanced to have the row sums given by Vector a and column sums given by
Vector b by the function

int ras(A, a, b)
If the sum of the elements of a and b are not equal, the user is required to pick which governs.

 Finally, I should mention that all of these matrix routines are available in a matrix
package call BUMP (Beginner’s Understandable Matrix Package) which can be used in C++
independently of the rest of Interdyme. The code of BUMP is carefully explained so that
beginners with C++ can learn from it how to write such functions. Understanding how it works,
however, is not necessary for using the functions in Interdyme any more than it is necessary to
know how Excel is programmed in order to use it.

9. Vector Elements in Regression Equations

So far, we have used only one behavioral, regression-estimated equation, the one for investment.
In this section, we will add regression equations for all components of Personal consumption
expenditures. In the process, we will introduce several new techniques. So far, we have used
only macrovariables, that is, those in the standard G bank, in regressions; now we will see how to
use elements of vectors in regression. To ensure that the total of the predicted values stands in a
reasonable relation to disposable income, we will need to learn about static vectors and apply
some vector arithmetic.

In the Tiny\Model directory, you will find the file PCE.DAT shown below.

57

The PCE.REG File

lim 1995 2003
catch pce.cat
save pce.sav
f dpdis = pdisinc - pdisinc[1]
ti PCE on Agriculture
r pce1 = pdisinc, dpdis
gr *

. . . .

ti PCE on Transport
r pce6 = pdisinc, dpdis
gr *
ti PCE on Services
r pce7= pdisinc, dpdis
gr *
save off
catch off

 Open G, assign the HIST.VAM file as bank b,
and make it the default vam file. Then
introduce the data in the PCE.DAT with an
“add pce.dat”statement, and check that it
has been correctly read with a show command.

From this data, we now want to estimate simple
consumption equations by regressing each
component of the Personal consumption
expenditure vector, pce, on personal disposable
income (pdisinc) and its first differene (dpdis).
You will also find in the \tiny\model directory
the PCE.REG file shown, in abbreviated form,
on the right. (The show where there are
similar triplets of commands for regressions for
sectors 2, 3, 4, and 5 in the full file on the
disk.) You can now execute this command file
in G either by “add pce.reg” or by opening the
file in the editor and clicking “Run”. You will
see that G has no problem figuring out that
pce1, pce2, ..., pce7 are elements of the pce vector in the default VAM bank.

IdBuild, however, is not so clever. It knows nothing about the VAM bank. In response to the
command “iadd pce.sav”, it will therefore give a number of error messages such as “Cannot find
pce1.” The solution, however, is simple. We just need to tell IdBuild that pce is a vector. We do
so with the command

The PCE.DAT File
vmatdat r 1 9 1 8 5
pce 1995 1996 1997 1998 1999 2000 2001 2002 2003
#" Date" " pce1$" " pce2$" " pce3$" " pce4$" " pce5$" " pce6$" " pce7$" pce8$
1995 14.169 1.908 76.759 283.944 288.323 109.289 443.041 0.0
1996 14.101 1.917 78.365 299.580 295.352 115.091 446.638 0.0
1997 14.127 1.934 76.941 317.095 304.522 121.077 454.966 0.0
1998 14.228 1.972 77.331 343.489 317.501 123.079 466.458 0.0
1999 14.519 2.016 77.277 375.369 334.601 126.768 478.526 0.0
2000 15.000 2.000 80.000 400.000 350.000 130.000 500.000 0.0
2001 14.947 2.001 77.527 407.622 353.149 127.153 506.602 0.0
2002 14.821 1.985 77.343 419.457 356.482 121.248 508.665 0.0
2003 14.974 1.928 75.216 435.677 364.071 115.282 507.851 0.0

58

Excerpt from HEART.CPP File
void pcef(Vector& pce)
{
 dpdis[t]= pdisinc[t]- pdisinc[t-1];
/* PCE on Agriculture */
 pce[1] = coef[0][0]+coef[0][1]*pdisinc[t]+coef[0][2]*dpdis[t];
/* PCE on Mining */
 pce[2] = coef[1][0]+coef[1][1]*pdisinc[t]+coef[1][2]*dpdis[t];
/* PCE on Gas and Electricity */
 pce[3] = coef[2][0]+coef[2][1]*pdisinc[t]+coef[2][2]*dpdis[t];
/* PCE on Manufacturing */
 pce[4] = +coef[3][0]+coef[3][1]*pdisinc[t]+coef[3][2]*dpdis[t];
/* PCE on Commerce */
 pce[5] = +coef[4][0]+coef[4][1]*pdisinc[t]+coef[4][2]*dpdis[t];
/* PCE on Transport */
 pce[6] = coef[5][0]+coef[5][1]*pdisinc[t]+coef[5][2]*dpdis[t];
/* PCE on Services */
 pce[7] = coef[6][0]+coef[6][1]*pdisinc[t]+coef[6][2]*dpdis[t];
}

isvector pce

in the MASTER file. Here is the complete MASTER file for the TINY model with the PCE
equations. The new material is in bold type.

Master File for TINY with PCE Equations
isvector pce
iadd pce.sav
isvector clear
iadd invtot.sav
iadd account.sav
iadd pseudo.sav
end

From it, IdBuild will produce a
HEART.CPP file with the section
shown to the right elow for the PCE
equations. Note first that pce
Vector must be passed to the
function pcef; Secondly, note that
the left side of equation stores the
value computed by the equation
directly into the appropriate element
of the pce vector. There is no
provision here for the automatic
application of fixes or rho
adjustments. How fixes or
adjustments may be applied we will
see in a later section. Finally, back
in the Master file above, note the
“isvector clear” command in
the third line. If it were not there,
IdBuild would write the following
invtotf and accountf functions so
that they also had to be passed –
quite unnecessarily – the pce vector.

Equations for Personal consumption expenditures (PCE) need a property not required of the
equations for most other variables, namely, they must add up properly. More precisely, sum of
the predicted values from the PCE equations plus Personal savings must equal Personal

59

The PCESpread.dat file

0.003175
0.000236
0.000000
0.481880
0.248311
0.036523
0.229874
0.000000

disposable income. We could, of course, just let savings be a residual, but it is too important for
the macroeconomic properties of the model to be treated so casually. So we generally want to
have an equation for personal savings – and for any other items in the difference between total
PCE and disposable income, of which there are none in TINY.) The best way to achieve this
equality is to add up the predicted pieces, compare the sum with the desired total, and spread the
difference over the components in some pre-determined shares. The shares I hare used are
proportional to the income coefficients of the various regression equations. The shares were
chosen in this way because the discrepancy between the sum of the predicted values and the
desired total can be thought of as a little more or little less income to be divided among the
various goods purchased. Sometimes we have used the standard error of estimate of the different
equations on the grounds that the changes should be greatest where the uncertainty about the right
value is greatest.

The mechanics of how the discrepancy is allocated is, however,
independent of how the shares were determined. We create a text
file, which we shall call PCESPREAD.DAT, which has the
shares we want to use, however we got them. They should, of
course, sum to 1.0. The box to the right shows this file for TINY.

In the file USER.H, we need to add at the end the line

GLOBAL Vector PCESpread;

to declare globally the Vector which will hold the shares for
spreading.

To make use of the new equations, we need to make a few changes in MODEL.CPP. On the disk,
the modified file is called MODEL2.CPP; copy it to MODEL.CPP to make the changes take
effect. The box on the next page shows excerpts from the new MODEL.CPP with the changed
areas in bold and, as usual, the locations of lines which have been cut out to help you concentrate
on the essentials indicated by four dots (. . . .).

The first order of new business in the loop() function is to resize the PCESpread vector which has
been declared globally and then to read in its data. That job is accomplished by the lines

 // Resize and read the vector for spreading the PCE discrepancy.
 PCESpread.resize(NSEC);
 PCESpread.ReadA("PCESpread.dat");

Note that the resizing is done by the “resize” function of the Vector, not by the “r” function. The
“r” function looks in the VAM file to find the dimension of the Vector, so it won’t work for the
PCESpread Vector, because it is not in the VAM file. The “resize” function is given the size
directly as its argument. In TINY, NSEC has already been given the value of 8.

60

The predicted values of the elements of the pce vector are computed from the regression
equations by the function call

pcef(pce);
The lines

 // Sum up the calculated PCE elements
pcesum = pce.sum();
pcediscrep = pcetot[t] - pcesum;
// printf("\npcediscrep = %10.2f\n",pcediscrep);
// Spread discrepancy by the proportions of PCESpread vector.
pce = pce + pcediscrep*PCESpread;

sum up the calculated PCE elements, subtract the sum from the desired total, and spread the
discrepancy among the sectors in the proportions given by the PCESpread vector. The line

// printf("\npcediscrep = %10.2f\n",pcediscrep);

is now just a comment without effect on the operation of the program. But if the // at the
beginning were removed, it would print the discrepancy at each pass through the loop. I used it to
satisfy myself that the discrepancies were fairly small. Instead, however, of totally removing it, I
left it as a comment which may be a useful illustration of how to include such debugging printing.

You should now estimate the PCE equations, make the required changes in USER.H and
MODEL.CPP, run IdBuild, then do Model | Run dyme and graph the resulting elements of the pce
vector.

To review, the two new techniques introduced in this section were the isvector command to
IdBuild and the use of a static vector not in the VAM file.

The isvector command, by the way, also allows vector elements to be used on the right-hand
side of regression equations. For example, in a more detailed model than TINY, the output of
the Railroad industry may be used in the equation for Railroad construction.

61

Excerpts from the MODEL2.CPP File
. . . .
#include "user.h" // All global variables for user model.
. . . .
const int NSEC=8; // Number of sectors in I-O table, most vectors.
void loop(void)
{

 triang.ReadA("triang.iv"); // Read the triangularization vector

 // Resize and read the vector for spreading the PCE discrepancy.
 PCESpread.resize(NSEC);
 PCESpread.ReadA("PCESpread.dat");

 if(MaxFlag == 'n')
 spin();

 }

void spin(){

 float oldpcetot,oldinvtot,pcedif,invdif;
 float pcesum, pcediscrep;
 for (t = godate; t<= stopdate; t++) {

. . . .
 while(Iteration < 20){
 Iteration++;

 oldinvtot = invtot[t]; oldpcetot = pcetot[t];
 if(t>= MacEqStartDate)
 // pce = pcetot[t]*pcec; Removed
 // Compute with the estimated PCE equations
 pcef(pce);
 // Sum up the calculated PCE elements

 pcesum = pce.sum();
 pcediscrep = pcetot[t] - pcesum;
 // printf("\npcediscrep = %10.2f\n",pcediscrep);
 // Spread the discrepancy by the proportions of the PCESpread vector.
 pce = pce + pcediscrep*PCESpread;
 invtotf();

 }

 }

 10. Systems of Detached-Coefficient Equations

62

The PCEEQN.REG File

catch pce.cat
lim 1995 2003
vam hist b
dvam b
f dpdis = pdisinc - pdisinc[1]

punch pce.eqn 7 4 2003

ti PCE on Agriculture
r pce1 = pdisinc, dpdis
ipch pce 1 L
gr *

. . . .

ti PCE on Services
r pce7= pdisinc, dpdis
ipch pce 7 L
gr *

punch off

catch off

The use of the isvector command to IdBuild is perfectly satisfactory for elements of
vectors on the right-hand side of the regression equation; but for variables on the left-hand side, it
has its limits. In the first place, automatic rho-adjustment is not possible. Secondly, it cannot be
used to pass the whole system of import equations to the Seidel routine so that imports dependent
on domestic demand can be calculated simultaneously with product outputs. Nor can it be used to
pass a whole system of consumption functions, such as the PADS system to be explained in a
later
chapter, to a function to compute predicted values as a fairly complicated function of the
parameters. All of the problems are overcome in through the use of a system of “detached-
coefficient” equations. Actually, this method is older than the isvector method and goes back to
models developed in the early 1960's. The “detached-coefficient” name comes from the fact that
the regression equations are “detached” from the variables names and stored in a separate file by
G. The added complexity of this method, however, is that program has to be written to interpret
the equations. For Seidel with import equations and for PADS, however, the code is already
written and part of the Interdyme system.

In this section, we will see how to use the
detached-coefficient method for the PCE
equations we have already estimated. We begin
from the PCEEQN.REG file shown in the box to
the right. It is a command file for G; as usual, the
four dots indicate the omission for printing here
of a repetitve portion of the text of the file. There
are two new commands, punch and ipch. The
punch command

punch pce.eqn 7 4 2003

opens a file to be called PCE.EQN to receive the
regression coefficients. There will be 7 equations
with up to 4 coefficients each. The last year of
data used in estimating them will be 2003. After
each equation is estimated there is an ipch
command such as

ipch pce 1 L

which writes to the open “punch” file the rho and
the regression coefficients for the most recently
estimated regression equation. In the file, it will
be labeled as the equation for the pce vector,
element 1. The “L” will be written to file to indicate the type of equation. It could be any one

63

The PCE.EQN File
 7 4 2003
pce 1 L 3
 1 2 3
 0.280107 10.1751 0.00312443 -0.00190926
pce 2 L 3
 1 2 3
 0.456294 1.62189 0.000232365 0.000253049
pce 3 L 3
 1 2 3
 0.150868 76.9213 -6.45766e-06 0.0127951
pce 4 L 3
 1 2 3
 0.214085 -303.312 0.474066 -0.155993
pce 5 L 3
 1 2 3
 0.268659 -14.8633 0.244285 -0.0810024
pce 6 L 3
 1 2 3
 0.572774 66.8459 0.0359306 0.0773437
pce 7 L 3
 1 2 3
 -0.0435048 164.664 0.226147 -0.179012

letter or number; we will write the program to interpret these letters correctly. The L stands for
“Linear”. The file ends with the command

punch off
to close the file to which G has been writing the regression results. The name of the command,
punch, refers to punching the results into cards and indicates just how ancient this method is. The
cards are gone, but the name works fine.

The PCE.EQN file
produced by G from the
PCEEQN.REG file shown
above is shown in the box
on the left. The three
numbers on the first line are
taken from the punch
command that opened the
file and have already been
explained. For each
equation there are then three
lines. The first gives,
somewhat redundantly, the
name of the vector of the
dependent variable, the
number of the element in
the vector, the type of
equation, and the number of
regression coefficients for
it. The second line specifies
which coefficients will be
given in the next line, and

the third line gives first the rho estimated for the equation and then the regression coefficients in
the order specified by the second line.

In our case, the second line may seem unnecessary since it is both very simple and always
the same. It can, however, add considerable flexibility. We might have had, for example, a more
general form of regression in which there were five possible independent variables with a relative
price term as the fourth and a time trend as the fifth variable. In that case, had the equation for
element 7 used only the intercept and the time trend, the command to G would have been

r pce7 = time
ipch pce 7 L 1 5

and in PCE.EQN the resulting lines would have been something like

64

pce 7 L 2
 1 5
 -0.0435048 164.664 12.345

where 12.345 is the coefficient on time. Since the coefficient matrix is originally set to zero, this
device allows one type of equation to be used for all variants of an equation that differ from a
base type only by omitting one or more of the variables. Note that the numbers at the end of the
“ipch” command are optional. If they are not specified, then G assumes that they are the integers
up to the number of variables in the equation.

Now with the equations estimated and stored away in the PCE.EQN file, we have to get
them into the Interdyme program and tell Interdyme how to interpret the coefficients. To do so,
we will use the C++ concept of a “class”, namely, of a class called “Equation.”. Generally, a
class is a combination of data and ways of working with the data. We have already met the
Matrix and Vector classes. Instances of a class are called “objects.” For example, in USER.H we
need to put the line

 GLOBAL Equation pceeqn;

It will make the object pceeqn an instance of the class Equation. Then in MODEL.CPP, we put
the lines

 // Resize, read, and store the PCE equations; reads the pce.eqn file.
 pceeqn.r("pce.eqn");

The second of these calls the r function (sometimes called method) of the pceeqn object to read
the file PCE.EQN, claim enough space for storing the data of the PCE equations, and read the
data from the file into that space. How does the computer know how to claim the space and read
the data? Basically, the same way it knows how to invert a matrix object, namely, the creators of
the Interdyme system wrote code that tells it how to read the data for any object that is an instance
of the Equation class. That code is in the file EQUATION.CPP if you really want to look at it,
but you can use the object very well without reading it. Any object of the Equation class knows
how to read the data, how to dish out the coefficients of the equations and some other data to
using programs, and how to apply rho adjustments to the predicted values. It does NOT know
how to use the coefficients to compute the predicted values. The user, you, must write those
instructions. We will see how in a moment. First, here is an except from MODEL.CPP which
shows the new code for reading the equation data in context in the loop() function.

65

 // Resize and read the vecor for spreading the PCE discrepancy.
 PCESpread.resize(NSEC);
 PCESpread.ReadA("PCESpread.dat");

 // Resize, read, and store the PCE equations; reads the pce.eqn file.
 pceeqn.r("pce.eqn");

 // pceeqn.rhostart is read as the last year used in estimating the PCE equations.
 // We want it to be the year in which to start the rhoadjustment. If we are
 // doing a historical simulation, that should MacEqStartDate if it is before the
 // date recorded in the pce.eqn file.
 if(pceeqn.rhostart > MacEqStartDate) pceeqn.rhostart = MacEqStartDate;

In the spin() function, the new equations are called to calculate the pce vector by the line

pcefunc();

shown in context in the lines below.

// Compute the estimated PCE equations with equation system
if(t>= MacEqStartDate){

pcefunc();
// Sum up the calculated PCE elements

 pcesum = pce.sum();
 pcediscrep = pcetot[t] - pcesum;
 // printf("\npcediscrep = %10.2f\n",pcediscrep);
 // Spread the discrepancy by the proportions of the PCESpread vector.

pce = pce + pcediscrep*PCESpread;

invtotf();
}

inv = invtot[t]*invc;
. . . .

 As already noted, the function pcefunc() to calculate the predicted values must be written by the
user. Consequently, it is in MODEL.CPP, and we had better have a good look at it. It is shown
in full in the box below.

The first thing to be explained is the difference between the equation number, for which the
program uses the variable i and the sector number, for which it uses the variable j . In the case
of TINY, the PCE vector has 8 elements, one for each sector, but there are only 7 equations,
because one sector (sector 8) is always zero. In larger models or for other dependent variables,
the difference between the number of sectors and the number of equations can be much greater.
The equations are read and stored in the order estimated, which is not necessarily the order of the
sector numbers. For each equation, however, the corresponding sector number is stored in the sec
variable Thus,

 j = pceeqn.sec(i);

66

Program to Calculate PCE from Detached-Coefficient Equations

// pcefunc() -- PCE functions for TINY
int pcefunc(){

int n, i,j,t1;
float cons;
char which;

n = pceeqn.neq; // Number of equations
// pdisinc is personal disposable income. It is a global macro variable.
// Compute variables used in several equations.
dpdis[t] = pdisinc[t] - pdisinc[t-1];

// Loop over the equations
for(i = 1; i <= n; i++){

j = pceeqn.sec(i); // j is the sector number of this equation.
which = pceeqn.type(i);
if(which == 'L'){

cons = pceeqn[i][1] + pceeqn[i][2]*pdisinc[t] +
pceeqn[i][3]*dpdis[t];
}

else{
printf("Unknown equation type %c in pcefunc, category %d.\n",

which,i);
tap(); //Pause so that error message can be read.
continue;
}

// Apply rho adjustment }
// Note the use of i and j in the following statement.

 pce[j] = pceeqn.rhoadj(cons,pce[j],i);
 }

pce.fix(t);
return(n);
}

will put into j the sector number corresponding to equation i . The single character indicating the
type of equation is stored in the type variable. Thus

which = pceeqn.type(i);
will put into the char variable which the type of equation i . In our case so far, it will be the letter
L . Finally, the regression coefficients of equation i are given by pceeqn[i][1], pceeqn[i][2],
pceeqn[i][3], and so on. In our case, these are the constant term, the coefficient of pdisinc and
dpdis, respectively. With this explanation, the code down as far as the comment

// Apply rho adjustment
should be reasonably clear. The working of the rho adjustment requires more explanation.

.In macro models, the calculation of the initial error from which the additive rho-adjustment
factor begins is simple enough. It is calculated in the first period of the run. Matters are more
complicated in the multisectoral model case because not all data is equally up-to-date. We may,
for example, have macroeconomic variables through 2005 but detailed PCE data only through
2003. The starting error for rho adjustments must therefore be calculated for PCE components in
2003 and used in 2004, 2005, and later years. For a macrovariable, however, actual data can be
used for 2004 and 2005, and the starting rho-adjusment error calculated in 2005 and used

67

thereafter. That is why the variable rhostart is part of and Equation object. As read from the
data file, it gives the last year of estimation, which is presumably the last year of data and
therefore the last year in which the base error of the rho-adjustment process can be calculated.
A further complication is that, since predicted values of one variable may depend upon
calculated values of other variables, the rho-adjustment errors cannot be set until the model
has converged for the period. Finally, sometimes we want to do a historical simulation and set
all the rho-adjustment errors in the first period of the run. In that case, we uncheck the “Use
all data” box on the screen which appears when we click Model | Run dyme.

 Bearing all that in mind, what happens when the program executes the statement

 pce[j] = pceeqn.rhoadj(cons,pce[j],i);

near the end of the program shown in the box? The rhoadj function of the pceeqn object is
passed the calculated value (cons), the value already in the vector (pce[j]), and the equation
number, (i). Simply put, the function then figures out what it is supposed to do and does it.
More specifically, if we are using all data and data is still available, it returns the actual value.
If we are past the end of the data, it adds on the rho-adjusted error to the value predicted by
the equation and returns that. If the signal that the model has converged (setrho) has been set
and we are in the period in which the base error should be computed, it does so, saves it, and
returns the actual value. If the model has converged, but we are already past the year for
calculating the error, it adds on the error for this year to the computed value and updates the
error for the next year by multiplying this year’s error by the appropriate rho factor.

That leaves one question – well, at least one – How does the rhoadj function know that the
model has converged? Why does it need to know that? Because only then can it calculate the
starting error for rho adjustment in the appropriate year, or in later years, multiply this year’s
errors by the appropriate rho to get them ready to be added to the values predicted by the
equations in the next year. The signal that the model has converged is the variable setrho. It
really should be called SetRhoAdjusmentErrors, but that is too long for lazy programmers
(like me) who abbreviated it to just setrho. This setrho can have one of two values, ‘y’ for yes
or ‘n’ for no. Near the top of the MODEL.CPP file, we see the lines

 float pcesum, pcediscrep;
setrho = 'n';
int Iteration;

so we know it starts off as ‘n’. What happens next is shown in code snippet from
MODEL.CPP in the box below. The while loop begun in the first line continues until
convergence is reached (or the limit on iterations is hit). On reaching convergence, the
program breaks out of the while loop, sets setrho to ‘y’, calls the two functions involving rho
adjustment – namely pcefunc() and invtot() – and then puts setrho back to ‘n’.

68

Handling of rhostart in MODEL.CPP

while(Iteration < 20){
 Iteration++;
 oldinvtot = invtot[t]; oldpcetot = pcetot[t];

 invdif = fabs(invtot[t] - oldinvtot);
 pcedif = fabs(pcetot[t] - oldpcetot);
 printf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\n",
 Iteration, pcetot[t],pcedif,invdif);
 // Break out of while loop if convergence has been reached
 if(invdif < .5 && pcedif < .5) break;
 }
// Set error for rhoadjustment
setrho = 'y';
if(t >= pceeqn.rhostart) pcefunc();
invtotf();
setrho = 'n';

As with macromodels, there other kinds of fixes besides rho adjustment. How to specify them
will be explained in section 12. Here we just note that the statement

pce.fix(t);
at the end of the pcefunc() function will apply the fixes to be explained in that section.

The fact that the rho-adjustment is working is seen very clearly in the graph below. For it, we
made the VAM file BASE.VAM the default VAM file, copied the variable pdisinc from the
BASE bank into the G workspace, and then estimated the regression in test mode, the default
mode. Thus, the “actual” line in the graph is history up to 2003 and model forecast thereafter,
while the “predicted” line is the prediction from the equation without rho adjustment but made
with the model-predicted values of disposable income. The way the model forecast
remembers the big error of the equation in 2003 indicates clearly that the rho adjustment is
working.

69

PCE on TransportPCE on Transport
134.0

121.6

109.3

1995 2000 2005 2010
 Predicted Actual

11. Import Equations
12. Changing input-output coefficients and prices
13. Fixes in Interdyme

Answers

3.2 The new outputs are
166.14 55.21 222.30 763.57 426.48 206.41 812.58 148.00
and the primary resources required to produce them are
317.24 1351.84 268.34 226.58.

3.3 The net export of depreciation is -5.73.
3.4 The new price vector is (.92 .96 .89 .90 .71 .93 .96 1.00).
3.5 Net export of greenhouse gas production is -31.87.

 2 The spelling of Leontief's name in Latin letters was for German speakers; English speakers almost
invariably mispronounce it, though he never corrected anyone. In Wassily, the W is pronounced V, the a is
long as in "father," and the accent is on the si which is pronounced "see". In Leontief the accent is on on
and the ie is pronounced like the ye in "yet". The final f is a soft v.

70

14. A Historical Note

All of us tend to presume that the world was made the way we found it; if there were
input-output tables in it when we arrived, then they must have always been there. Of course,
that is not the case. In fact, they are so much connected with the work of one man, Wassily
W. Leontief, that without his remarkable contribution they would probably not have been
developed until decades later. Born in St. Petersburg in 1906, he was already a university
student when the Bolsheviks began taking over the educational program. He joined a group
protesting this process, was caught pasting up a poster, spent a while in jail and was
periodically jailed and interrogated thereafter. Though deeply interested in the economy of
his country and in the efforts at economic planning, he clearly had little to hope for from the
Bolshevik government. Even as an undergraduate, however, his paper on "The Balance of the
Economy of the USSR" describing efforts in Russia to investigate interindustry relations came
to the attention of professors in Germany. When he graduated from the University of
Leningrad in 1926, he was offered the possibility of graduate study in Germany, but it was
already difficult to get out of the Soviet Union. By an extraordinary turn of fate, he developed
a bone tumor on his jaw. It was removed, but the surgeon warned him that he would surely
soon die. Armed with the surgeon's written statement, he argued to the officials that he should
be allowed to leave the country since he would certainly be useless and possibly expensive to
the government. The argument worked, and in 1925 he arrived in Germany with the tumor in
a bottle. It was there re-examined and found ... benign! His work in Germany led, via
Nanjing, to an appointment at the National Bureau of Economic Research in New York. His
theoretical writings came to the attention of the Harvard faculty which offered him an
instructorship. He accepted the Harvard offer on the condition that he be given a research
assistant to help him build what we would now call an input-output table. The reply informed
him that the entire faculty had discussed his request and had unanimously agreed that what he
proposed to do was impossible and, furthermore, that even if it were done, it would be useless.
Nonetheless, they were so eager to have him come that they would grant the request and hope
that he would use the resources for better purposes. He didn’t. In 1936, his first results were
published; in 1939 a book The Structure of the American Economy appeared. It had input-
output tables for the United States for 1919 and 1929. The theoretical parts of the book had
the major ideas of input-output analysis: coefficients, simultaneous solution, and price
equations. During World War II, Leontief constructed, with support of the U.S. Bureau of
Labor Statistics (BLS), a 96-sector table for 1939 and, by 1944 was able to study changes in
employment patterns which could be expected after the end of the war. In 1947, a second
edition of the book appeared with the addition of a 1939 matrix and a comparison of input-
output and single-equation projections.2 In 1973, he was awarded the Nobel prize in
economics for this work. Leontief remained active until shortly before his death in 1999 at the
age of 93.

In 1949, a group at the BLS began work on a 400-sector table for 1947. A 190-sector
table was published in 1952, but financing -- which had come through the Defense budget --
for the more than fifty people working on the project was discontinued early in the

71

Eisenhower administration, so that neither the full table nor the extensive documentation of
the details of its production were ever published.

In other countries, making of tables spread rapidly. They were incorporated in the
United Nation's standard System of National Accounts prepared by Richard Stone. In 1950,
the first international conference on input-output methods was sponsored by the United
Nations; the eleventh (without U.N. support) was held in 1995.

In the late 1950's, Soviet authors, eager to make input-output acceptable in their
country, put together a table for the Soviet Union in 1924 and argued that all the essential
ideas had originated in the Soviet Union. The difference, however, between what they could
find in the literature of that period and Leontief's comprehensive treatment only heightens an
appreciation of his contribution.

Gradually, it has come to be recognized that an input-output table is not only useful for
economic analysis and forecasting but is also an essential step in making reliable national
accounts. The statistical offices of most major industrial countries, therefore, prepare input-
output tables, often on a regular basis. Annual tables for France, the Netherlands, Norway,
and Japan are prepared as a part of annual national accounting. In the USA, a comprehensive
table is made every five years in the years of economic censuses (years ending in 2 and 7) and
is used in revising and "benchmarking" the national accounts.

In 1988, the International Input-Output Association was organized as a group of
individuals interested in using input-output techniques. In 1989, it began publishing its own
journal, Economic Systems Research.

The Interdyme modeling system, like the G program, was developed by the Inforum
group in the Department of Economics at the University of Maryland. It has been used in
developing and linking dynamic input-output models of about twenty countries. Most of these
models have been developed and used mainly in the country concerned.

72

Chapter 15. Matrix Balancing and Updating - the RAS Method

1. The RAS Algorithm

Making an input-output matrix from scratch for a country is a major undetaking often
involving a group of ten or more persons for a number of years. By the time the project is
finished, the matrix refers to a year that is apt to seem part of ancient history. Hence the
question arises, Given an input-output table for a base year, is there a way to update it to a
more recent year with less work than making the table from scratch? In this updating,
one usually has some data for the more recent year. One wants the matrix for this year,
which we may call the target year, to conform to all those data.

Usually those data include at least industry outputs, major GDP components, and value-
added by industry. The value-added by each industry can then be subtracted from its
output to give the total intermediate inputs by each industry. Thus, we would know the
row total for each industry and the column total for each final demand column and for the
intermediate use of each industry. An obvious check on the accuracy of this information
is that the sum of the row totals equals the sum of the column totals. We will assume that
this condition has been met, although meeting it is not always easy except by a rough
scaling. Thus, we have the margins or frame for the table for the target year.

An initial guess of the inside of the table for the target year can then be made by assuming
constant coefficients for the input-output coefficients and for the shares in each of the
final demand vectors. More sophisticated initial estimates could also be made. One could
use, for example, consumption functions to “forecast” the purchases of households.
However the initial inside elements of the table are estimated, it is almost certain that they
will not have the right row and column sums. Adjusting them to make them conform to
these control totals is generally done by what has come to be called the RAS procedure, a
name derived from notation in Richard Stone’s description of the method in A Computable
Model of Economic Growth (Chapman and Hall, London, 1962). The idea had been
mentioned by Leontief in the 1941 edition of The Structure of the American Economy, but
the idea seemed to pass unnoticed until applied by Stone.

The method is extremely simple in practice. First scale all of the rows so that each has the
correct total. Then scale all the columns so that each has the correct total. The row sums
are then probably no longer correct, so scale them again, and then scale the columns
again, and so on until the scaling factors have converged to 1.0. The matrix at that point
has the desired row and column sums. If At denotes the flow matrix at stage t of the
operation, Rt denotes the row scaling factors at step t arrayed as the diagonal elements of
an otherwise zero matrix, and St denotes the column scaling factors similarly arrayed,
then the flow matrix at the beginning of stage t+1 is

At+1 = Rt At St. (1)

The expression on the right gave rise to the name RAS, which should be pronounced as
the three letters, though foreign speakers of English often turn it into one syllable, “ras”.

73

2. Convergence of the Algorithm

The practice is simple, but will the process converge? To answer that question, we will
need some notation. Let the original matrix be A, whose elements we will denote by ai j, let
b be the positive vector of required row sums and c be the positive vector of required
column sums. The first condition is that A be non-negative. The second is simply that
there must exist at least one matrix with zeroes everywhere that A has zeroes and positive
numbers everywhere that A has positive numbers which has row sums equal to b and
column sums equal to c.

Notice that this second condition did not assume a solution of the form we are seeking,
that is, derived from A by scaling the rows and columns. It does, however, have some
important implications. The first is that the sum of the elements of b must be the same as
the sum of the elements of c. A further implication is that, if it is possible rearrange the
rows and columns of A so that an all-zero block appears, then the corresponding subtotals
of b and c must be consistent with those blocks remaining zero while the other cells are
positive. For example, if

then we must also have b1 < c1. In practice, one insures that the first implied condition
(the equality of the sum of row sums and column sums) is met before beginning the RAS
calculations. If they fail to converge, then one looks for inconsistences along the lines of
the second implication.

The proof of the convergence of the RAS procedure under these general conditions is
requires a complicated notation. The essence of the proof, however, can be seen in the
special case in which A is all positive, and we will limit ourselves to that case. (For the
general case, see M. Bacharach, Biproportional Matrices. Cambridge University Press.)

We will start the process by scaling the rows, then the columns, and so on. In the first
row scaling, we choose the first-round row-scaling factors by

(2)

where the superscript on the r refers to the iteration number. Then we compute the first-
round column scaling factors by

(3)

Then we come back to compute the second-round row scaling factors,

74

(4)

Thus, we can see that the second-round row factors are reciprocals of convex
combinations of the first-round column factors, that is, they are reciprocals of a weighted
average of those first-round column factors with positive weights which sum to 1. Thus,

(5)

By similar reasoning,

(6)

The inequalities in (6) imply

(7)

Then combining the first inequality of (5) with the second of (7) and the second of (5)
with the first of (7) gives

(8)

In other words, the biggest element of r diminishes from iteration to iteration while the
smallest rises. Since A is all positive, all of the inequalities in (5) through (8) will be strict
inequalities unless all the elements of r are equal or all the elements of s are equal. But if
they are all equal, they must be all be equal to 1, for otherwise the scaling would increase
or decrease the total of all elements in the matrix, contrary to the fact that, after the first
row scaling, the sum of all elements remains equal to the common sum of the vectors r
and s. Since the sequences of r(k) and s(k) vectors both lie in closed, bounded sets, they
have limit points. Can these limit points be other than the vectors that are all 1's? No,
because at any such point, one more iteration of the process would bring a finite reduction
of the maximum element (and a finite increase in the minimum element) of each vector.
(This is where we use the all positive assumption to have strict inequalities in (8).) Thus,
for points sufficiently close to these limit points, the next iteration must also bring lower
maximal and higher minimal elements than those of the limit point, contrary to the limit

75

point being a limit point. Therefore the unique limit of each sequence of vectors is a
vector of ones.

Thus the convergence is proven for the case of all positive A. The proof is similar for A
with some 0 elements, but in this case, it may require several iterations to get a finite
reduction in the maximal elements of r and s.

In practice, the condition that the sum of b equals the sum of c is checked and assured
before the iterative process begins. The initial r and s vectors should be reported by the
program because they often indicate discrepancies between b and c vectors and the initial
A matrix. Once the iterations start, the largest and smallest elements of the r and s
vectors should be reported every five or ten iterations. It is common to observe “wars”
between a row control and a column control when one element looms large in both its row
and column but the control totals for the two are quite different. Such “wars” are
symptomatic of a failure of the second assumption and an indication that the b and c
vectors should be revised.

It should be noted that the RAS procedure works for rectangular matrices just as well as
for square ones. It is also useful in making input-output tables and the bridge matrices
used to convert investment by investor to investment by product bought or consumption
by consumer categories to consumption by product categories used for productive
categories.

3. Preliminary Adjustments Before RAS

It often happens in updating or making tables that one has better information about some
cells than about others. For example, in updating the a table with a Glass row, we may
have quite good information on the sales of glass products to Beer, because we have
information on the production of glass beer bottles. In this case, we can simply remove
the “relatively well-known flow” from both its row and column control, perform the RAS
balancing on the remaining flows, and then put back in the known flow.

The problem with this procedure is that the “relatively well-known flows” tend to be big
flows. If they are not quite consistent with the row or column controls, then removing
them requires that all of this inconsistency should be attributed to changes in the
remaining small flows. Thus, the small flows can be pushed about rather considerably.
This problem can be reduced by a preliminary scaling of the relatively well-know flows
before removing them from the process. To describe this adjustment, let Ri be the sum (in
the base year) of the relatively well-known flows in row i ; Si , the sum of the other flows;
and Bi , the row control. Then let

(9)

and define zi as the solution of

76

(10)

The value of z which satisfies (10) is readily found by Newton’s method. We then scale

all the relatively well-known flows by and all the other flow by zi . By (10), the

row will then have the correct sum. By (9), If then is

closer to1.0 than is zi ; that is to say, the relatively well-known flows are scaled less than
the other flows. They are however, scaled somewhat. If they account for a small fraction
of the total of all flows in the row, they will be scaled but little; if they account for much
of the row, they will be scaled almost as much as the other flows.

After this preliminary scaling, the known flows can be removed for the rest of the RAS
process. While this scaling may seem a bit arbitrary, in practice it has given plausible
results in many applications. In fact, it worked so well that the first person working with
it, Thomas Reimbold, felt that the z must stand for Zauber, “magic” in his native language,
and the procedure is therefore often referred to as the Zauber process.

77

Chapter 16. Trade and Transportation Margins and Indirect Taxes

1. Trade and Transportation Margins

A perennial problem in applied input-output analysis is the treatment of trade and
transportation margins and of indirect taxes. The problem is nicely illustrated with
transportation costs. If output is valued at the producer’s price — the price at the factory
gate, so to speake — then the cost of transporting the goods to the user must be
considered to be paid separately by the purchasing industry. Thus, the cost of the rail
services used in hauling the coal used by electric power plants shows up as an input of rail
transportation into electric generation. The cost of hauling generation equipment to and
from the utilities’ repair facilities would appear in the same cell. Similarly, the cost of
hauling coal to a steel mill and of hauling iron ore to the same mill will appear in the same
cell.

The problems with this treatment are (1) it puts quite diverse activities into the same cell
and (2) the table does not reflect the way the rail industry thinks about its business. It
thinks in terms of products hauled — and prepares statistics on products hauled, not on
industries to which it delivers. (Despite these problems, this treatment is the one most
commonly followed.)

All of the problems apply with equal force to all the other transportation margins and to
wholesale and retail trade margins.

One alternative is to change the measure of output of the industry to include the cost of
delivering the product to the user. One disadvantage of this treatment is that it removes
the numbers in the input-output table one step further from the numbers in terms of which
people in the industry think, namely in producer prices. Another problem is that
transportation margins may be very different for a dollar’s worth of product delivered to
different users. The transportation cost of oil delivered to an electric utility by pipeline
from a marine terminal may be very different from delivering by truck or rail to a small
industrial user.

A better alternative is to add another dimension to the input-output tables. Thus,
corresponding to each cell of the tables we have considered so far there would be a vector.
The first entry in the vector would be the transaction in producer prices; the second entry
would show the rail margin; the third, the truck margin; the fourth, the air freight; and so
on through the wholesale and retail trade margins. In effect, we would have a table with
layers, the first layer for the producer price transaction, the second for the rail margins,
and so on. In fact, the benchmark tables for the United States are prepared with all this
information. It has not been commonly used because the size of the matrices involved has
been, until fairly recently, large relative to the power of the computers available. That
constraint has now been effectively removed, and we may ask, How would we in fact
compute with such a layered table?

If A represents the coefficient matrix in producer prices and Ti represents the ith layer of
transportation and trade margin coefficients, then the fundamental input-output equations
become

78

where Si is a matrix with 1's in the row which produces the service distributed by layer i

and elsewhere all zero. The matrix is, in fact, the matrix in producer

prices with which it has been traditional to compute. What is gained by distinguishing the
layers is not a correction of the traditional computations but rather a better description of
what the flows are and a better basis for studying changes in coefficients in the Ti
matrices.

2. Indirect Taxes, Especially Value Added Taxes

Indirect taxes such as property taxes or franchise taxes are always and without problems
treated as a component of value added, along with depreciation, profits, interest, and labor
compensation. Excise taxes such as those on gasoline, alcohol, and tobacco are usually
similarly treated, but with less justification, because some uses of these products are
exempt. For example, gasoline used to power agricultural machinery or exported whiskey
or cigarettes are exempt. Thus, these taxes should also be treated as a layer of the table,
since they are not uniform for all cells. Retail sales taxes are usually treated as a
component of value added by Retail trade. This treatment assumes that the tax is
proportional to the retail margin in all products in all cells. In fact, there are different tax
rates on different products, and some products are sold by retail establishments for
intermediate use without retail sales tax.

The greatest problems, however, have probably been created by the value added tax
(VAT) in the tables of countries which use this tax, a group that now includes all members
of the European Union and numerous other countries. Producers pay VAT on the value of
their sales but may deduct the VAT paid on their purchases. VAT is not charged on
certain products, such as health services. Nor is it charged on exports. Many European
input-output tables have been published in producer prices plus non-deductible VAT.
That practice meant that the cell for paper products sold to the hotel industry did not
contain VAT, because the VAT on those sales was deductible from the VAT owed by the
hotels. The cell for paper products sold to hospitals, however, contained VAT, because
the hospitals owed no VAT from which the VAT on the paper products could be
deducted. Similarly, since households owe no VAT, they cannot deduct the VAT on the
paper products they buy, so the VAT is included in the cell showing the sales of paper
products to households. Thus, the cells in the paper products row of such a matrix have
very diverse levels of VAT content. That means that the valuation of the product across
the row is not homogeneous. It takes more wood pulp to make a dollar’s worth paper
towels used by a hotel than to make a dollar’s worth of paper towels used by a hospital or
household, because a significant portion of their dollar goes to VAT. This heterogeneity
in the pricing in the row is obviously detrimental to the accuracy of the input-output
calculations. The solution to the VAT problem is simply to create a VAT layer of the
table.

79

80

Chapter 17. Making Product-to-Product Tables

1. The Problem

Makers of input-output tables often find data on inputs not by the product into which they
went but by the industry that used them. An industry is a collection of establishments with
a common principal product. But besides this principal product, any one of these
establishments may produce a number of secondary products, products primary to other
industries. Establishments classified in the Cheese industry may also produce ice cream,
fluid milk, or even plastic moldings. Consequently, the Cheese industry may have inputs
of chocolate, strawberries, sugar, plastic resins, and other ingredients that would appal a
connoisseur of cheese. The inputs, however, are designated by what the product was, not
by what industry made them. Similarly, data on the final demands, such as exports and
personal consumption expenditure, is by product exported or consumed, not by the
industry which made it. Thus, input-output matrices usually appear in two parts. The first
part, called the Use matrix, has products in its rows but industries in its columns. The
entries show the use of each product (in the rows) by each industry (in the columns.) The
second, called the Make matrix, has industries in the rows and products in the columns;
the entries show how much of each product was made in each industry.

How can we use these two matrices to compute the outputs of the various products
necessary to meet a final demand given in product terms?

One way is to consider that each product will be produced in the various industries in the
same proportion as in the base year of the table. This assumption is used, for example, in
computable general equilibrium models based on social accounting matrices that
explicitly show the Make and Use matrices. This assumption, however, can produce
anomalous — not to say silly — results. In the above example, an increase in the
demand for cheese would automatically and immediately increase demand for chocolate,
strawberries, and sugar. That is nonsense. There must be a better way to handle the
problem.

This highly unsatisfactory situation has led to efforts to make a product-to-product matrix.
Indeed, the problem is so well recognized that the “Transmission programme of data” of
the European system of accounts requires that all national statistical offices of the member
states of the European Union transmit “symmetric” input output tables to Eurostat every
five years. No real advice, however, is offered by Eurostat to the statistical offices on
how to make these product-to-product tables. This paper offers a valuable tool for the
process. (“Symmetric” is here intended to mean that the same concepts are used in both
rows and columns. Its use as applied to these matrices is both highly confusing and not
descriptive. Since it is the nature of the rows and columns that is the same, not their
measure, symphysic would be both a better characterization and less confusing.)

To make such a matrix, we need to employ an additional assumption. There are basically
two alternatives:
9. The product-technology assumption, which supposes that a given product is made

with the same inputs no matter which industry it is made in.

81

10. The industry-technology assumption, which supposes that all products made
within an industry are made with the same mix of inputs.

The System of National Accounts 1993 (SNA) reviews the two assumptions and finds
(Section 15.146, p. 367) "On theoretical grounds, the industry technology assumption
performs rather poorly" and is "highly implausible." (Section 15.146, p 367) “From the
same theoretical point of view, the product (commodity) technology model seems to meet
the most desirable properties It also appeals to common sense as it is found a priori
more plausible than the industry technology assumption. While the product technology
assumption thus is favoured from a theoretical and common sense viewpoint, it may need
some kind of adjustment in practice. The automatic application of this method has often
shown results that are unacceptable, insofar as the input-output coefficients appear as
extremely improbable or even impossible. There are numerous examples of the method
leading to negative coefficients which are clearly nonsensical from an economic point of
view." (Section 15.147)

Since 1967, the Inforum group has used a "semi-automatic" method of making "some
kind of adjustment" in calculations based on the product-technology assumption, as called
for by the SNA. We have used it with satisfactory results -- and without a single negative
coefficient -- on every American table since 1958. The method was published in Almon
1970 and in Almon et al. 1974. Despite this long and satisfactory use of the method, it
seems not to have come to the attention of the general input-output community. In
particular, the authors of the section quoted from the SNA seem to have been unaware of
it. The purpose of this note is to record the method where it is more likely to come to the
attention of anyone working in input-output. At the same time, it expands the previous
exposition with an example, provides a computer program in the C++ language for
executing the method, and presents some of the experience of applying the method to the
1992 table for the USA.

2. An Example

An example will help us to visualize the problem. The Table 1 below shows the Use
matrix for a 5-sector economy with a strong concentration in dairy products, especially
cheese and ice cream.

82

Table 1. The Use Matrix

USE Industries
Products Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 4 36 0 0 0
Rennet 14 6 0 0 0
Other 28 72 30 5 0

83

We will call this matrix U. The use of chocolate in makings cheese and rennet in making
ice cream alerts us to the fact that the columns are industries, not products. (Rennet is a
substance used to make milk curdle. It is commonly used in making cheese but never in
ice cream.) The Make matrix, shown in Table 2 below, confirms that cheese is being
made in the ice cream industry and ice cream in the cheese industry.

Table 2. The Make Matrix

MAKE Products
Industries Cheese Ice cream Chocolate Rennet Other
Cheese 70 20 0 0 0
Ice cream 30 180 0 0 0
Chocolate 0 0 100 0 0
Rennet 0 0 0 20 0
Other 0 0 0 0 535
Total 100 200 100 20 535

This matrix shows that of the total output of 100 of cheese, 70 was made in the Cheese
industry and 30 in the Ice cream industry, while of the total ice cream output of 200, 180
was in the Ice cream industry and 20 in the Cheese industry. It also shows that, of the
total output of 90 by the cheese industry, 78 percent (70/90 = .77778) was cheese and 12
percent ice cream. We will need the matrix, M, derived from the Make matrix by
dividing each cell by the column total. For our example, the M matrix is shown in Table
3.

Table 3. The M Matrix

M Cheese Ice cream Chocolate Rennet Other
Cheese 0.7 0.1 0.0 0.0 0.0
Ice cream 0.3 0.9 0.0 0.0 0.0
Chocolate 0.0 0.0 1.0 0.0 0.0
Rennet 0.0 0.0 0.0 1.0 0.0
Other 0.0 0.0 0.0 0.0 1.0

Now let us suppose that, in fact, cheese is made by the same recipe wherever it is made
and ice cream likewise. That is, we will make the "product-technology assumption." If it
is true and the matrices made well, then there exists a "recipe" matrix, R, in which the first
column shows the inputs into cheese regardless of where it is made, the second column
shows the inputs into ice cream regardless of where it is made, and so on. Now the first
column of U, U1, must be .70*R1 + .10*R2 ,where R1 and R2 are the first and second
columns of R, respectively. Why? Because the Cheese plants make 70 percent of the
cheese and ten percent of the ice cream. In general,

U = RM' (1)
where M' is the transpose of M. It is then a simple matter to compute R as

84

For our example, (M')-1 is given in Table 4.

Table 4. MN Inverse

1.5 -0.5 0.0 0.0 0.0
-0.2 1.2 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

and R works out to be

Table 5. The R or “Recipe” Matrix

R Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 0 40 0 0 0
Rennet 20 0 0 0 0
Other 30 70 30 5 0

This R is very neat. All the rennet goes into cheese and all the chocolate goes into ice
cream. Unfortunately, as indicated by the quotation from the SNA, it is rare for the results
to turn out so nicely.

Indeed, just a slight change in the U matrix will show us what generally happens.
Suppose that the U matrix had been just slightly different, with 1 unit less of chocolate
going into cheese as shown below and one less unit of rennet used in ice cream.

Table 6. An Alternative Use Matrix

Alternative U Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 3 37 0 0 0
Rennet 15 5 0 0 0
Other 28 72 30 5 0

Table 7 shows what the R matrix would have been:

Table 7. An Impossible R Matrix

85

Impossible R Cheese Ice cream Chocolate Rennet Other
Cheese 0.0 0.0 0.0 0.0 0.0
Ice cream 0.0 0.0 0.0 0.0 0.0
Chocolate -1.7 41.7 0.0 0.0 0.0
Rennet 21.7 -1.7 0.0 0.0 0.0
Other 30.0 70.0 30.0 5.0 0.0

Here we find the infamous small negative flows. It is not hard to see how they arise.
While it is conceivable that the Cheese industry does not produce chocolate ice cream, it
is also very easy for the table makers to forget to put into the Cheese industry the
chocolate necessary for the ice cream it produces, or to put in too little. Wherever that
happens, negatives will show up in the R matrix.

The negatives have driven at least some statistical offices to the industry-technology
assumption. The so-called commodity-to-commodity matrix, C, derived from this
assumption is

C = UN', (3)
where N is the matrix derived from the Make matrix by dividing each row by the row
total. For example, the Cheese column of C is C1 = .77778U1 + 0.14285U2 because
77.778 percent of the product of the first industry is cheese and 14.285 percent of the
product of the second industry is cheese. The result of applying this assumption to our
example is Table 8.

Table 8. The Mess Made by the Industry Technology Assumption

C Indust. Tech. Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 8.254 31.746 0 0 0
Rennet 11.746 8.254 0 0 0
Other 32.063 67.936 30 5 0

This "solution" has made matters worse. The original U matrix had 4 units of chocolate
going into the Cheese industry, which admittedly made some ice cream. Now this
industry-technology product-to-product matrix asserts that 8.25 units of chocolate went into
producing pure cheese! Not into the Cheese industry but into the product cheese! And
8.25 units of rennet went into producing curdled ice cream! To call the result a product-
to-product table would be little short of scandalous.

Fortunately, we do not have to choose between this sort of massive nonsense and negative
flows. It is perfectly easy to rely mainly on the product-technology assumption, yet avoid
the negatives, as we will now show.

86

3. The No-Negatives Product-Technology Algorithm

We wrote the basic equation relating U, M, and R as equation (1) above. It will prove
convenient to rewrite equation (1) as

U' = MR'. (4)

Using U'i to denote the ith column of U' and R'i to denote the itb column of R, we can write

U'i = MR'i . (5)

Notice that this is an equation for the distribution of product i in row i of the Use matrix
as a function of M and distribution of the same product in row i of the R matrix. We can
simplify the notation by writing

u = U'i and r = R'i ; (6)

then the previous equation becomes

u = Mr (7)
or

0 = -Mr + u (8)

and adding r to both sides gives

r = (I - M)r + u . (9)

Save in the unusual case in which less than half of the production of a product is in its
primary industry, the column sums of the absolute values of the elements of (I - M) are
less than 1, and the convergence of the Seidel iterative process for solving this equation is
guaranteed a by well-known theorem. (If the share of the total production of a particular
product coming from the industry to which it is primary is x, then the absolute value of
the diagonal of (I - M) for that product is | 1 - x | and the sum of all the absolute values of
off-diagonal elements in the column is |1 - x |, so the total for the column is 2*| 1 - x |,
which is less than 1 if x > .5.) We start this process with

r(0) = u (10)

and then define successive approximations by

r(k+1) = (I - M) r(k) + u . (11)

To see the economic interpretation of this equation, let us write out the equation for the
use of a product, say chocolate, in producing product j, say cheese:

87

 (12)

The first term on the right tells us to begin with the chocolate purchases by the
establishments in the cheese industry. The second term directs us to remove the amounts
of chocolate needed for making the secondary products of those establishments by using
our present estimate of the technology used for making those products, r(k). Finally, the
last term causes us to add back the chocolate used in making cheese in other industries.
The amount of chocolate added by the third term is exactly equal to the amount stolen, via
second terms, from other industries on account of their production of product j:

(13)

because

(14)

It is now clear how to keep the negative elements out of r. When the "removal" term, the
second on the right of (12), is larger than the entry in the Use matrix from which it is
being removed, we just scale down all components of the removal term to leave a zero
balance. Then instead of adding back the "total-stolen-from-other-industries" term, (1 -
mjj)rj , all at once, we add it back bit-by-bit as it is captured. If a plundered industry, say
Cheese, runs out of chocolate with only half of the total chocolate claims on it satisfied,
we simply add only half of each plundering product's claim into that product's chocolate
cell in the R matrix. We will call the situation where the plundered industry runs out of
the product being removed before all claims are satisfied a "stop".

The process can also be applied to the rows of the value added part of the matrix. It is not
certain, however, that the column sums of the resulting value-added table will match the
value added as calculated from product output minus intermediate input. This value-
added matrix will generally require RAS balancing to make it consistent with the
product-to-product intermediate table.

4. When Is It Appropriate to Use This algorithm?

This algorithm is appropriate where the product-technology assumption itself is at least
approximately true. Essentially, it allows there to have been slightly different
technologies in industries where assuming strictly the average product technology would
produce negatives. It is appropriate where the negatives arise because of inexactness in
making the tables or because of slight differences in technologies in different industries.
Applied to the Use matrix of either Table 1 or Table 6, this method gives the "neat"
Recipe matrix of Table 5 with no rennet in ice cream and no chocolate in cheese. It
never produces negative entries nor positive entries where Use has a zero. The row totals
are unaffected by the process. It is, moreover, equivalent to deriving Recipe from

88

equation (1) if no negatives would arise, so that if the product-technology assumption is
strictly consistent with the Use and Make tables, the method produces the true matrix. It
may even produce a correct Recipe matrix from a faulty Use matrix — as it has perhaps
done in our example — so that equation (1) could be used to revise the estimate of the
Use matrix.

Certain accounting practices, however, may produce situations which appear to be
incompatible with the product-technology assumption, even though the underlying reality
is quite compatible. For example, local electric utilities generally buy electricity and
distribute it. In the U.S. tables, they are shown as buying electricity (not coal), adding a
few intermediate inputs and labor, and producing only a secondary product, electricity,
which is transferred, via the Make matrix, back to electricity. Looked at mechanically,
this method of making electricity is radically different from that used in the Electricity
industry, which uses coal, oil, and gas to make electricity, not electricity itself. If our
algorithm is applied thoughtlessly to this situation, it cannot be expected to give very
sensible results.

Fortunately, it is easy to generate signs of this sort of problem. One can compute the new
Use matrix implied by equation (1) with the Recipe matrix found by the algorithm and the
given Make matrix. This "NewUse" matrix can then be compared with the original Use
matrix and the causes of the differences investigated. We will follow this procedure in
next section on the experience of using the method on the 1992 tables for the USA.

To fix the problem in the above example about electricity, we have only to consider the
output of the State and local utilities as production of their own primary product, which is
then sold, via the Use matrix — not transferred via the Make matrix — to the Electricity
industry. In essence, we use the industry technology assumption for the local electric
utilities — and for all other industries where all of the output is secondary. The industry
technology assumption may also be preferable for transfers to some catch-all sectors such
as "Miscellaneous food preparations" (SIC2099), which includes such disparate products
as vinegar, yeast, Chinese noodles, and peanut butter. It is probably just as reasonable to
suppose that a product transferred into this industry is made with the average technology
of the industry where it is made as with the average technology of this catchall sector.
Indeed, this sort of industry can produce the reverse of the negatives problem. For
example, because of the importance of peanut butter in this industry, it has significant
inputs of oil seeds. Now the no-negatives algorithm will not pull oil seeds out of the
"Macaroni, spaghetti, vermicelli, and noodles" industry, (SIC2098), (which used no oil
seeds) just because it transferred some Chinese noodles to 2099. But neither will it take
out an adequate amount of flour for those noodles, because flour is quite unimportant in
the 2099 input mix. This problem shows up only indirectly by substantial oil-seed inputs
to many food industries in the NewUse which transferred products to 2099 but, in fact,
used no oil seeds. That is a signal to switch to the industry technology for these transfers
by converting them to sales in the Use matrix.

Thus, in the use of this method, a number of iterations may be necessary. Changes in
concepts, in treatments of some transactions, and occasionally in underlying data may be
necessary. Although the calculation of the non-negative Recipe matrix is totally
automatic, it may be necessary to make several runs to get acceptable results.

89

In this process, it must be recognized that a nice, clean accounting system may not be
operational, that is, it may not provide by itself a simple, automatic way to go from final
demand vectors specified by products to total outputs of those products. We may have to
change slightly some of the concepts in the accounting system to make it operational. In
making the change required for the Electricity example, we have messed up the neat
accounting concept of the Electricity column of the Use matrix as a picture of what came
into a particular group of establishments. We have, however, taken a step toward creating
what might be called an operational Use matrix. I do not say, therefore, that statistical
offices should not produce pure accounting Use matrices. But I do feel that they should
also prepare the operational use matrix and the final product-to-product matrix, for in the
process, they will learn about and deal with the problems which the users of the matrix
will certainly encounter. They may even discover and correct errors in their work before
they are discovered by their users.

This process is totally inappropriate for handling by-products such as hides produced in
the meat packing industry or metal scrap produced in machinery industries. Their
treatment is a different subject.

5. A Brief History of the Negatives Problem

The idea to compute R from equation (1) seems to have been first put in print by Van
Rijckeghem (1967). He realized that there could be negatives but did not think they
would be a serious problem. The idea of using equation (1) in this way, however, must
have been in the air, for by early 1967, I had used it, without thinking that it was original,
found negatives, and started work on the algorithm presented here.

The problem was encountered by ten Raa, Chakraborty and Small [1984] in the course of
work which was primarily concerned with identifying by statistical means true by-
products. They note the existence of the method presented here but write,

[Almon] iterates truncated Neumann series in which matrix multiplications are
carried out only to a limited extent to avoid negatives. This arithmetic
manipulation goes without justification, is arbitrary and depends on the choice of
[make matrix]-decomposition as well as the iteration scheme.

I do not believe that any of this comment is correct. The Neumann series is the
expansion
(I - A)-1 = I + A + A2 + A3 + The algorithm used here makes no use of this series;
rather it uses the Seidel procedure. There are no matrix multiplications, nor is there is any
equivalence between a “limited” number of terms in the Neuman series and the Seidel
solution. The procedure is carried to convergence. We have seen that the procedure has a
perfectly reasonable economic interpretation; indeed, it arose from the economic
interpretation of the Seidel procedure. The only thing perhaps "arbitrary" is that 0 is
considered a reasonable input flow while negatives are considered unreasonable. I do not
know what the "[make matrix]-decomposition" refers to, but I can assure the reader that
the solution does not depend on the "iteration scheme." While I could not see how it
could, given that it is carried to convergence, I changed the program and ran the
"robberies" in the opposite order. The answers were identical.

90

The ingenious attempt of ten Raa [1988] to modify elements of the matrices in such a way
as to find a most probable U matrix consistent with a non-negative R should be mentioned
even though it ended, in the author’s view, in frustration.

Rainer and Richter [1992] have documented a number of steps which they took towards
making what I have called here the operational Use and Make matrices. Such steps
should certainly be considered and applied if need. These authors still ended up with
hundreds of negative flows in the R matrix because they were using just equation (1). At
that point, the process described here could have been applied.

Steenge and Konijin [1992] point out that if the R matrix computed from equation (1) has
any negatives in it, then it is possible to change the levels of output of the various
industries in such a way that more of all products is produced without using more of all
inputs. They feel that it is implausible that such a rearrangement is possible and observe
that perhaps the negatives "should not be regarded as rejecting the commodity technology
assumption, but as indicators of flaws in the make and use tables." (p. 130). I feel that
there is much merit in that comment. It seems to me that the right time and place to use
the algorithm presented here is in the process of making the tables. If there are not good
statistical grounds for preferring the original Use matrix, the recomputed NewUse might
well be argued -- following the reasoning of Steenge and Konijn -- to be a better estimate.

The caveat here is that there may well be cases where it really would be possible to
increase the outputs of all products while using less of some product. For example, if
there are shoes made in the Plastics products industry without any use of leather, while the
Footwear industry uses leather, then by moving shoe production from Footwear to Plastic
products it may be possible to produce more of all products while using less leather.
Where such cases arise, a different solution is necessary, for example, moving the shoes
made in the Plastics products industry together with their inputs into the Footware
industry or insisting that the two kinds of shoes are separate if substitutable products.

6. Application to the U.S.A Tables for 1992

The method described here has been applied to all of the USA tables since 1958 with
experiences broadly similar to those described here for the 1992 table. This table has 534
sectors, counting some construction sectors which have no intermediate sales. Of these
534, 425 have secondary production. Of the 283,156 possible cells in a 534 X 534 matrix,
the Use matrix has 44,900 non-zero cells, and the Make matrix has 5,885. The matrix was
produced in two versions. In one, certain activities, such as restaurant services of hotels,
were removed from the industry where they were produced (Hotels) and put into the
sector where these activities were primary (Restaurants). In the other, these activities
were left in the industry where they were conducted. The first version was designed to
make the product-technology assumption more valid, and it has been used here. The
matrix also puts true by-products (such as hides from meat packing) in a separate row, not
one of the 534 considered here.

To try to convey a feeling of what it is like to work with the algorithm, we will look at the
process midway along, rather than at the very beginning or the somewhat polished end.

91

That is, some adjustments in the Use and Make matrix from which the algorithm starts
will have already been made. As a result of this application, further adjustments will be
suggested before the next application.

Before this application of the algorithm, the output of industries which had only
secondary production had been changed, for reasons explained above, to be primary and
the flows moved from the Make to the Use matrix.

In the following rather detailed descriptions, necessary to give a picture of what the
process is really like, I will, to avoid confusion, capitalize the first letter of the first word
in industry names but not in product names.

The industry Water and sewer systems failed to satisfy the requirement that at least half of
the output of a product should be in the industry where it is primary. Indeed, some 85
percent of this product’s output comes from Other state and local enterprises, and the
iterative procedure failed to converge for a few rows until this secondary transfer was
converted into a primary sale. Production of secondary advertising services, which
occurred in many sectors, was also converted to a primary product of the producing
industry and "sold" via the Use matrix to the Advertising industry. Secondary production
of recreational services in agricultural industries was similarly converted. Much of the
output of the several knitting industries had been treated originally as secondary
production, and these had been changed to primary sales before the calculations shown
here. Finally, the diagonals of many columns of the Use matrix are large, in part because
intra-firm services, such as those of the central offices, often appear there. Thus the same
sort of service that is on the diagonal of industry i is also on the diagonal of industry j. In
this case, the product-technology assumption does not apply, not because it is untrue, but
because of the way the table was made. Until we are able to obtain tables without this
problem, we have just removed half of the diagonals from the Use table before calculating
Recipe, and have then put back this amount in both of these matrices and in the NewUse
matrix.

The data in both Use and Make tables were given to the nearest 1 million dollars, and all
dollar figures cited here are in millions. The convergence test in the iterative process was
set at one tenth of that amount, .1 million dollars. The iterative process converged for
most rows of the R matrix in less than five iterations. The most iterations required for any
row was 15.

The resulting Recipe matrix looks very similar in most cells to the original Use table. The
Recipe matrix contains, of course, only non-negative entries and can have strictly positive
entries only where U has positive entries. It may, however, as a result of the "robbing"
process, have a zero where U has a positive entry. In all, there were only 95 cells in
which Recipe had a zero where Use had a positive entry.

Although it is the Recipe matrix that we need from this process, it is also interesting, as
noted above, to compare the original Use matrix with what we may call NewUse,
computed by the equation 1 by NewUse = Recipe*Make’. The difference between Use
and NewUse shows the changes in the Use matrix necessary to make it strictly compatible
with product-technology assumption, the given Make matrix, and the calculated Recipe

92

Sum of Absolute Count
Differences
.050 - .250 17
.030 - .050 24
.020 - .030 54
.010 - .020 117
.000 - .010 312

Table 9. Comparison of Use and NewUse

matrix. If there was no "stop" in a row, the two matrices will be identical in that row.
There were 118 such identical rows, 109 of them having no secondary output.

In the other rows, these differences turn out to be mostly small but very numerous. The
first and most striking difference is that NewUse has almost twice as many non-zero cells
as does Use. Nearly all of these extra non-zeros are very small, exactly the sort of thing to
be reasonably ignored in the process of making a table. But it is precisely this
"reasonable ignoring" that leads to the problem of many small negatives in the product-to-
product tables calculated without the no-negatives algorithm.

To get a closer look at how Use and
NewUse compare, we may first divide
each column by corresponding industry’s
output and then look at the column sums
of the absolute values of the differences
of individual coefficients in the column.
This comparison is shown in Table 9.
Clearly the vast majority of industries
show only small differences compatible
with “reasonable ignoring” of small
flows in the Use matrix. They, therefore,
cast no serious doubt on the product-
technology assumption or the usability of the Recipe matrix obtained by the no-negatives
algorithm. If what we are interested in is the R matrix, we can ignore the small
differences between Use and NewUse.

 Sum Column Column Largest single difference
 |dif| numb. Name Row | dif | Row name

 0.250 272 Asbestos products 31 0.023 Misc. nonmetallic minerals
 0.232 88 Sausages 3 0.151 Meat animals
 0.167 125 Vegetable oil mills, nec 15 0.074 Oil bearing crops incl s
 0.118 493 Auto rental & leasing 232 0.025 Petroleum refining
 0.088 128 Edible fats and oils, nec 15 0.043 Oil bearing crops incl s
 0.088 126 Animal & marine fats 126 0.038 Animal & marine fats &
 0.086 87 Meat packing plants 3 0.057 Meat animals
 0.079 285 Primary metals, nec 22 0.006 Iron & ferroalloy ore m
 0.079 225 Manmade organic fibers 212 0.036 Indl chem: inorg & org
 0.074 450 Transportation services 232 0.019 Petroleum refining
 0.068 123 Cottonseed oil mills 5 0.048 Cotton
 0.065 357 Carburetors, pistons, 391 0.011 Electronic components
 0.060 99 Pickles, sauces 1 0.011 Dairy farm products
 0.060 95 Canned & cured sea food 19 0.039 Commercial fishing
 0.059 139 Yarn mills & textile fini 212 0.035 Indl chem: inorg & org
 0.055 459 Sanitary services, steam 413 0.018 Mechanical measuring devices
 0.051 248 Leather gloves 244 0.012 Leather tanning

Table 10. Largest Differences between Use and NewUse

93

There are, however, a few cases that should be looked at more closely. Table 10 shows a
list of all of industries which had a sum of absolute differences greater than .050. We will
look at the top five.

For Asbestos products, the cause of the difference is quickly found. The fundamental raw
material for these products comes from industry 31 Misc. non-metallic minerals. Over
forty percent of the output of asbestos products, however, is produced in industry 400
Motor vehicle parts and accessories, but this industry buys neither miscellaneous non-
metallic minerals nor asbestos products. In other words, it seems to be making almost
half of the asbestos products without any visible source of asbestos. This anomaly seems
to me to be an oversight in making the Use matrix which should be simply corrected. If
our only interest is the Recipe matrix, the algorithm seems to have computed pretty nearly
the right result from the wrong data. On the other hand, if we want to correct the Use
table, NewUse, gets us started with the right entry for Misc. non-metallic minerals into
both Motor vehicle parts and Asbestos products. To keep the right totals in these two
columns of Use will require manual adjustments.

The second largest difference between Use and NewUse shown in Table 10 is in the input
of meat animals into Sausage. The Sausage industry is shown in the Use matrix to buy
both animals ($655) and slaughtered meat ($9688). It had a primary output of $13458
and a secondary output of $2612 of products primary to Meat packing. Meat packing had
a secondary output of $4349 of sausage. Now in Meat packing, the cost of the animals is
over eighty percent of the value of the finished product, so the purchases of animals in
the Sausage industry is insufficient to cover even the secondary meat output of this
industry, not to mention making any sausage. In making Recipe, the input of animals
directly into sausage is driven to zero and cut off there rather than being allowed to
become negative. Then when NewUse is made, the direct animal input for all the
secondary production of meat packing products is put in, thus making a flow some six
times as large as the purchase of meat animals by the Sausage industry in the original Use
matrix.

What I believe to be really happening here is that Sausage plants are mostly buying halves
of slaughtered animals from meat packers, selling off the best cuts as a secondary product,
and using the rest to make sausage. Over in the Meat packing plants, the same thing is
happening. Fundamentally, there is only one process of sausage making. The question is
how to represent it in the input-output framework. The simplest representation of it in the
Use matrix would be to have packing houses sell to sausage plants only the meat that
would be directly used in sausage. The rest, the choice cuts sold off as meat by Sausage
mills, would simply be considered sold by the packers without ever passing through the
Sausage mills. The industry output of Sausage mills is reduced but cost of materials
(namely, meat) is reduced by exactly the same amount, so there is no need to adjust other
flows. Product output of meat is reduced, but not the industry output. Thus, a slight
adjustment in the accounting makes it broadly compatible with the product-technology
assumption. The seventh item in Table 10, by the way, is just the other side of this
problem.

The third largest of the discrepancies lies in row 16, oil-bearing crops, of industry 125
Vegetable oil mills n.e.c (not elsewhere classified). The differences in the underlying

94

flows is not large, $298 in Use and $251 in NewUse, but it turns up in Table 10 because
the cost of these oil crops is such a large fraction of the output of the Vegetable oil mills.
A comparison of the oil-bearing crops row of Use and NewUse shows that NewUse has a
number of small positive entries for industries where, as for Cheese, Use has a zero and
where, moreover, it is highly implausible that there was any use of oil seeds. On the other
hand, most of the large users of oil seeds, like Vegetable oil mills have had their usage
trimmed back. The key to what is going on is found in industry 132 Food preparations
n.e.c.. In Use, this industry bought $558 from oil bearing crops, nearly twice the
consumption of the vegetable oil mills themselves. Peanut butter, as noted above, is in
this catchall industry. That fact, by itself, is not a problem. The problem is that about a
quarter of the production of products primary to this industry are made in other industries.
In fact, most of the food manufacturing industries have some secondary production of the
miscellaneous food preparations. Probably "preparations" made in the Cheese industry
are quite different from those made in the Pickles industry. And it certainly makes no
sense to spread oil seed inputs all over the food industries. Here we have a clear case of
the inapplicability of the product-technology assumption if all these secondary products
are considered to be truly the same product. On the other hand, as argued above, the very
heterogeneity of the products makes it appropriate to consider each as a primary product
of the industry which produces it and then "sell" it, via the Use matrix, to Food
preparations for distribution. In the next pass at making Recipe, this change is to be
made.

The vegetable oil industries also present another interesting case of apparent but perhaps
not real violation of the product-technology assumption, which shows up in the fifth item
in Table 10. Industry 125 Vegetable oil mills n.e.c. has inputs of oil-bearing crops,
cotton, and tree nuts totaling $437. It uses these oil sources to produce a primary output of
$572. Industry 128 “Edible fats and oils” produces $92 of products primary to 125
without a penny of any of these inputs! Surely this is flat violation of the product-
technology assumption. But is it really? "Edible fats and oils" buys lots of the products
primary to Vegetable oil mills. Thus, it is entirely possible to have two bottles of
chemically identical oil made of identical raw materials by identical refining processes but
with one bottle made entirely in Vegetable oil mills while the oil in the other bottle was
pressed in those mills and then sold to Edible fats and oils for finishing. We might call
this situation “trans-market product technology.” Our algorithm gave the right answer for
the Vegetable oil mills column of Recipe, that is, it combined output of products primary
to the oil mills with the inputs of oil sources which this industry had.

The fourth largest discrepancy in Table 10 is for the gasoline input into Automobile
renting and leasing. Use shows $1131; Recipe ups that to $1197.2; but NewUse cuts it
back to $565.5. What happened? The problem is that slightly more than half of the
output Auto renting is produced in Credit agencies, with a minuscule input of gasoline.
When NewUse is made, more than half of the gasoline in Recipe is allocated over to
Credit agencies. Here we are confronted with a failure of the product-technology
assumption not because of different processes for producing the same product but because
two quite different products have been called one and the same in the accounting system.
The output of the Credit agencies, long-term leasing, is quite distinct from the short-term
renting, which is were the gasoline was used. The best solution would be to recognize the
difference of the two products. Short of that, the worst of the problem can be fixed by

95

turning the secondary transfer from Credit agencies to Automobile rental into a primary
flow. The present Recipe matrix, incidentally, is about right in the gasoline row but
makes no connection between a final demand for automobile renting and leasing and the
output of credit agencies.

From these five or six cases, we see that our algorithm cannot be expected to give usable
results on the first try. The problems are likely to lie, however, neither in the fundamental
economic reality nor in the algorithm, but in an accounting system which needs a few
modifications in Use and Make to make it operational in our sense. Most importantly,
the algorithm gives us the means to identify the places that need attention and a way of
progressing systematically through the problems. It also provides a way of producing a
final, non-negative Recipe matrix that implies a NewUse matrix close enough to the
modified Use matrix that the differences can be safely ignored.

Making an input-output table requires fussing over details, and making a good Recipe
matrix with the algorithm presented here is no different in this respect from any other part
of the process. Use of the algorithm reveals and pinpoints problems. Moreover, the
important problems are likely to be small in number. We have covered all of those
causing a difference of as much as .100 between columns of Use and NewUse. To get to
a Recipe table we would be ready to accept might require another week’s work. But in
the total effort which went into making this table, that is minuscule. Most importantly, the
use of the algorithm gives us a way to work on the problems rather than just wring our
hands over negatives.

In this sense, this algorithm has performed satisfactorily over many years on every U.S.
table since 1958. The use of the method seems to me to deserve to become a standard part
of making input-output tables and, in particular, for making product-to-product tables.

7. The Computer Program

The C++ code for this algorithm, using functions from BUMP, the Beginner’s
Understandable Matrix Package, for handling matrices and vectors, is given below. It is
reproduced here because the code shows more clearly than the verbal or formulaic
description exactly what is done. The program and the supporting BUMP code made be
downloaded from the Inforum Internet site: www.inforum.umd.edu. The main program
here reads in the matrices that were used in the examples. The main program for the
actual calculations of the full-scale American matrices is significantly larger and has
various diagnostic output, such as that shown in Table 10. It is available on request.

In using the algorithm, it is important for documenting what has been done to have a
method of input of the original Use and Matrix matrices that preserves the original version
at the top of the input file and introduces the modifications as over-rides later in the file.
It is also important to have software, such as ViewMat, which will show corresponding
columns of several large matrices side-by-side in a scrolling grid. ViewMat is also
available on the Inforum Internet site.

#include <stdio.h> // for printf();
#include <math.h> // for abs()

96

#include "bump.h"
int purify(Matrix& R, Matrix& U, Matrix& M, float toler);

void main(){
Matrix Use(5,5), Make(5,5), R(5,5), NewUse(5,5);
Use.ReadA("Use.dat");
Make.ReadA("Make.dat");
purify(R,Use,Make,.000001);
R.Display("This is R");
writemat(R,”Recipe”);
NewUse = R*(~NewUse);
writemat(NewUse,”NewUse”);
tap();
printf("\nEnd of calculations.\n");
}

/* Purification produces a produt-to-product (or Recipe) matrix R from a Use matrix U and
a Make matrix M. M(i,j) shows the fraction of product j made in industry i. U(i,j)
shows the amount of product i used in industry j. The product-technology assumption leads us
to expect that there exits a matrix R such that U = RM'. If, however, we compute R =
U*Inv(M') we often find many small negative elements in R. This routine avoids those small
negatives in an iterative process.
*/

int purify(Matrix& R, Matrix& U, Matrix& M, float toler){
int row, i, j, m, n, iter, imax;
const maxiter = 20;
float sum,rob,scale,dismax,dis;
n = U.rows(); // n = number of rows in U
m = U.columns(); // m = number of columns in U
Vector C(m), P(m), Flow(m), Discrep(m);
// Flow is row of U matrix and remains unchanged.
// P becomes the row of the purified matrix.
// C is the change vector at each iteration.
// At the end of each iteration we set P = Flow + C, to start // the next iteration.

// Purify one row at a time
for(row = 1; row <= n; row++){

C.set(0.); // C, which will receive the changes, is
// initialized to zero.
// P = Flow + C will be the new P.
pulloutrow(Flow,U,row);
P = Flow;
iter = 0;
start: iter++;
for(j = 1; j<=m; j++){
// Calculate total claims from other industries on
// the inputs into industry j.

sum = 0;
for(i = 1; i <= m; i++){

if(i == j) continue;
rob = P[i]*M(j,i);
sum += rob;
C[i] += rob;
}

// Did we steal more from j than j had?
if (sum > Flow[j] && sum > 0){

// scale down robbery
scale = 1. - Flow[j]/sum;
for(i = 1; i <= m; i++){

if(i == j) continue;
C[i] -= scale*P[i]*M(j,i);
}

sum = Flow[j];
}

C[j] -= sum;
}

// Check for convergence
imax = 0;
dismax = 0;
for(i = 1; i <= m; i++){

dis = fabs(P[i] - Flow[i] - C[i]);
Discrep[i] = dis;
if(dis >= dismax){

imax = i;
dismax = dis;
}

}

97

P = Flow + C;
C.set(0);
if(dismax > toler){

if(iter < maxiter) goto start;
printf(
"Purify did not converge for row %d. Dismax = %7.2f. Imax = %d.\n",
row,dismax,imax);
}

putinrow(P,R,row);
}

return(OK);
}

98

References

Almon, C. (1970) Investment in input-output models and the treatment of secondary products, Input-
Output Techniques, vol. 2, Applications of Input-Output Analysis, pp.103-116 (Amsterdam,
North Holland Publishing Co.)

Almon, C., Buckler, M., Horwitz, L., and Reimbold, T.,(1974) 1985, Interindustry Forecasts of the
American Economy (Lexington, Lexington Books) pp.151-154.

European system of accounts: ESA 1995, Transmission programme of data. Eurostat.

Rainer, N. and Richter, J. (1992) Some Aspects of the Analytical Use of Descriptive Make and
Absorption Tables. Economic Systems Research, 4, pp.159 - 172

Steenge, A.E. and Konijin. A new Approach to Irreducibility in Multisectoral Models with Joint
Production. Economic Systems Research, 4, pp 125-132

The System of National Accounts 1993 (published by the United Nations, the World Bank, the IMF,
the OECD, and the European Union)

ten Raa, Thijs, D. Chakraborty, and J.A. Small (1984) An Alternative Treatment of Secondary
Products in Input-Output Analysis, Review of Economics and Statistics, pp. 88-97.

ten Raa, Thijs (1988) An Alternative Treatment of Secondary Products in Input-Output
Analysis:Frustration”, Review of Economics and Statistics, pp. 535-538.

Van Rijckeghem (1967) “An Exact Mehod for Determining the TechnologyMatrix in a Situation with
Secondary Products,” Review of Economics and Statistics, pp. 607-8.

