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1 Introduction

The construction of commodity-by-commodity input-output matrices from Make
and Use matrices is a much debated area. Different views compete with each other,
both in theoretical aspects as in practical appraisement of the importance of the
various issues involved.

The commodity-technology assumption and the industry-technology assump-
tions form the basic theoretical concepts between which one must choose. In an
axiomatic framework Kop Jansen and ten Raa (1990) have shown that the com-
pilation method based on the commodity-based assumption is superior (see also
ten Raa and Rueda-Cantuche, 2003, for a recent overview). However, other strong
arguments are in favor of the industry technology assumption, in particular the
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problem of how to avoid negative elements in the matrices when using the com-
modity technology assumption. It is also possible to mix both assumptions, using
hybrid assumptions. Armstrong (1975) is a classical reference for hybrid models,
Bohlin and Widell (2006) is a very recent one.

Almon (2000) presents an algorithm for the construction of commodity-by-
commodity input-output matrices that solves the problem of negative elements by
allowing deviations from the small commodity technology assumption or, viewed
from another perspective, by correcting the Use matrix. In his paper Almon
includes a discussion on the economic interpretation of the algorithm. Within
the INFORUM family there exists a large body of experience with the use of
Almon’s algorithm (see Parve, 2004, for a recent application).

The present paper has Almon (2000) as a starting point and aims to deal with
problems that arise when a whole set of input-output-tables must be compiled in
a consistent way. This is normally the case in larger input-output-based projects,
in particular in multisectoral macro models such as INFORUM models.

A task that is very complicated is the construction of a consistent set of To-
tal Flow, Import-Flow and Domestic Flow matrices.1 The (elementwise) sum of
Import-Flow and Domestic Flow matrix must be equal to the Total Flow matrix.
This imposes a serious restriction. To present and analyse different ways to deal
with this restriction forms the primary motivation of this paper. For the construc-
tion of the set of flow matrices one can proceed bottom-up, top-down or based on
forming the differenced-based. Different concepts can be used as guiding principles
for these procedures and will be described in this paper. To our knowledge there
are no prior academic publications that deal in depth with this issue.

Other problems arise when the Value Added matrix and the Employment ma-
trix must be constructed on a commodity basis, given data on activity-basis. Apart
from the avoidance of negative elements, other consistency requirements within the
matrices to be calculated must be fulfilled. For example the number of full-time
equivalents must be smaller than the number of jobs. An important issue is also
the IO balance equation, which requires that the column sums of the Total Flow
matrix plus the column sums of the commodity-based Value Added matrix must
sum to the vector of produced commodities.

The aim of the paper is to present methods and practical procedures for the
construction of a consistent set of commodity-by-commodity input-output tables.
An application to Austria demonstrates their practicability. The application is
part of the new Austrian INFORUM model, which is introduced in a companion
paper (Böhm and Richter, 2006).

In the following two sections we develop methods for the construction of commo-
dity-by-commodity matrices starting from Make and Use tables. Section 2 presents

1The most common name for the Total Flow Matrix is Transactions matrix. Almon (2000)
uses the term Recipe matrix. In this paper we use the terms Total Flow matrix, Import-Flow
matrix and Domestic Flow matrix to stress the relatedness between them. They are subsumed
under the term flow matrix.
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a generalized and an enhanced version of Almon’s algorithm. Section 3 introduces
concepts and methods for constructing Import-Flow and Domestic Flow matri-
ces. Section 4 contains an application to Austria. While the application puts an
emphasis on the tasks where the new methods proposed in Section 2 and 3 play
a major role, other important tasks involved in the construction of input-output
tables are treated as well. Section 5 concludes.

2 Algorithms for the construction of commodity-

by-commodity tables

2.1 A description of the algorithm by Almon (2000)

Almon (2000) presents a way of making commodity-by-commodity tables from Use
and Make matrices based on the commodity-technology assumption. He shows
that slight adjustments in the commodity technology assumption can avoid nega-
tive elements in the Flow matrix. Before proposing useful extensions of Almon’s
algorithm we give a short description of it, using basically the notation of the
original paper but relying more on matrix based notation.

Let us introduce some matrices and vectors. We assume an economy with n
commodities produced by n activities. U = (uij) is the Use matrix. Its elements
specify the quantity of commodity i which is used as input by activity j. V =
(vjk) is the Make matrix. Its elements denote the quantity of commodity k that
is produced by activity j. From these two matrices one can derive the vector
x′ = (x1, x2, . . . , xn), xk =

∑n
j=1 vjk of produced commodities and the matrix M =

(mjk) = (vjk/xk), whose elements give the share of activity j in the production of
commodity k. The aim is constructing the Flow matrix R = (rik) that specifes
the quantity of commodity i which is used in the economy in order to produce
the commodity k. Finally, the matrix of technical input coefficients is given by
A = (aik) = (rik/xk).

With the commodity-technology assumption we have

R = U(M′)−1 (1)

The construction of R according to (1) can also be performed row-wise:

r = u(M′)−1 (2)

where r and u are rows of R and U with corresponding row index. (r and u are
defined as row-vectors.) A simple iterative procedure

r(l+1) = r(l)(I−M′) + u, (3)
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initialized with r(0) = u will guarantee that r(l) converges to r as long as the
diagonal elements of M dominate the off-diagonal elements in a certain way.2

Equation (3) serves as a starting point for Almon’s algorithm.
We can rewrite (3) as

r(l+1) = u− r(l)M̌′ + r(l)(I− M̂′), (4)

where ˆ denotes diagonalization by suppression of the off-diagonal elements of a
square matrix and ˇ denotes off-diagonalization by suppression of the diagonal
entries of a square matrix. (Thus, M = M̂ + M̌.)

It can be shown that in equation (4) the third term on the right-hand side can
be replaced by (e′M̌)⊗r(l), where e is a summation vector and ⊗ denotes element-
wise multiplication of two matrices or vectors of the same dimension (elementwise
multiplication is also known as Hadamard or Schur product):

r(l+1) = u− r(l)M̌′ + (e′M̌)⊗ r(l), (5)

We can see that in (5) the new r(l+1) is formed by starting with u and then sub-
tracting something (the second term on the right-hand side) and adding something
(the third term on the right hand side). What is added and was is substracted
depends on the current technological assumptions on the use of the commodity
considered, represented by r(l). Almon (2000) gives an economic interpretation of
this iteration process.

Almon’s algorithm introduces “stops” in equation (5) that prevent elements
from becoming negative. Whenever more is about to be subtracted from an element
of u then the corresponding element of the intended substraction term is scaled
down such that r(l+1) is not negative. Then, in the addition term on the right-hand
side of (5) this scaling down factors must also be considered in an appropriate way.
With these modifications the iteration formula of Almon’s algorithm becomes

r(l+1) = u− s(l) ⊗w(l) + (s(l)M̌)⊗ r(l), (6)

where s(l) is a row-vector of “stops” or scaling factors and w(l) = r(l)M̌′.
Including the iteration formula for s(l) and arranging all necessary steps, Al-

mon’s algorithm can be defined as follows:

(i) Set i = 1 (Start with first row),

(ii) Set l = 0 and r(l) = u = u = i-th row of U (Start iterative procedure),

(iii) Set w(l) = r(l)M̌′,

(iv) Set row-vector s(l) such that each of its elements s
(l)
k satisfies:

s
(l)
k =

{
1 if uk < w

(l)
k

uk/w
(l)
k otherwise

2see Almon (2000) for more details.
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(v) Set r(l+1) = u− s(l) ⊗w(l) + (s(l)M̌)⊗ r(l),

(vi) Test for convergence by comparing r(l+1) and r(l),

(vii) If convergence has occurred assign r(l) to the i-th row of R, otherwise set
l = l + 1 and perform steps (iii)–(vi) again,

(viii) If i = n stop, otherwise set i = i + 1 and perform steps (ii)–(vii) again.

This definition of Almon’s algorithm uses row-wise notation, which seems natu-
ral in view of its implementation as a computer program. The iterations necessary
until convergence will probably differ for each row and efficient computer pro-
gramming should consider this. However, the definition of the algorithm in matrix
notation is also revealing:

R(l+1) = U− S(l) ⊗ (R(l)M̌′) + (S(l)M̌)⊗R(l), (7)

where we skip the iteration formula for S(l). After convergence we have

R∗ = U− S⊗ (R∗M̌′) + (SM̌)⊗R∗. (8)

The economic interpretation of the result of the algorithm can be viewed from
two perspectives. Differences between R∗ and R can be ascribed either to devia-
tions from the commodity technology assumption or to “errors” in the Use matrix.
A corrected “New Use” matrix is implied by the Total Flow matrix delivered by
the algorithm as

U∗ = R∗M′. (9)

The inspection of this “New Use” matrix possibly yields valuable information
on problem areas in the original data. In section 3 we will need this matrix as
an ingredient for construction formulas for consistent Import-Flow and Domestic
Flow matrices.

2.2 Generalisation of Almon’s algorithm

To demand from the Flow Matrix that it contains only non-negative elements is
descretionary in a certain sense. Any lower bound other than zero could be justified
as well. In the course of the construction of a consistent set of input-output tables
we found out that there is a need for a modification of Almon’s algorithm to deal
with general lower-bound matrices. For example a-priori information from older
input-output tables or consistency requirements may provide minimum values for
specific elements of the commodity-by-commodity matrix.

We developed such a modification of Almon’s algorithm that integrates the
information on lower-bound restrictions defined by the lower-bound matrix B =
(bik). The modified algorithm is a generalisation of Almon’s algorith because it
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implements the conventional Almon’s algorithm when a lower-bound matrix B = 0
is supplied, wher 0 is the zero-matrix.

The Generalized Almon’s algorithm can be defined as follows:

(i) Set i = 1 (Start with first row),

(ii) Set l = 0, r(l) = u = i-th row of U and b = i-th row of B (Start iterative
procedure),

(iii) Set w(l) = r(l)M̌′,

(iv) Set row-vector s(l) such that each of its elements s
(l)
k satisfies:

s
(l)
k =


1 if uk − w

(l)
k < bk

(uk − bk)/w
(l)
k if 1 > (uk − bk)/w

(l)
k > 0

0 otherwise

(v) Set r(l+1) = u− s(l) ⊗w(l) + (s(l)M̌)⊗ r(l),

(vi) Test for convergence by comparing r(l+1) and r(l),

(vii) If convergence has occurred assign r(l) to the i-th row of R, otherwise set
l = l + 1 and perform steps (iii)–(vi) again,

(viii) If i = n stop, otherwise set i = i + 1 and perform steps (ii)–(vii) again.

Just as the conventional Almon’s algorithm this algorithm converges as long
as equation (3) converges. However, in order to receive meaningful results it is
necessary to supply a meaningful lower-bound matrix to the algorithm. An obvious
example for a not very meaningful lower-bound matrix would be B = U, which
would result in R∗ = U in one single iteration.

It is also possible that the lower-bound conditions specified by B cannot be
satisfied, if some or all elements are chosen too large. Convergence is nevertheless
guaranteed because we restricted s

(l)
k to be non-negative in step (iv) of the iter-

ation. This restriction seems economically reasonable since the direction of the
reallocations of the flows in the iteration procedure in step (v) of the algorithm
must not be reversed, only restricted.

2.3 Enhancement of Almon’s algorithm

With the Almon’s algorithm it can happen that a specific element of R∗ is positive
even though the corresponding element of R is negative. Or, in the Generalised
Almon’s algorithm it can happen that r∗ik > bik even though rik < bik. It seems
desirable to ensure that r∗ik = bik if rik < bik. The lower bound conditions should
be exactly met in those cases where they are needed. This suggests another mod-
ification of the algorithm.
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The Enhanced Almon’s algorithm introduces an emdedded iteration procedure
within the iteration formula for s

(l)
k in step (iv) of the algorithm. The exact spec-

ification of the Enhanced Almon’s algorithm is available from the author upon
request.

3 Methods for the construction of import-flow

matrices

3.1 Notation and Definitions

Before we can present and discuss several ways of constructing a consistent set
of symmetric matrices for total flows, domestic flows and import flows, we need
to introduce some notation, in addition to the one use in the previous section.
Furthermore we present a definition of the well-known commodity technology as-
sumption and of two alternative assumptions concerning import-proportions that
will form the theoretical guides for the methods developed.

Let Z = (zijk) be a three-dimensional array whose elements define the quan-
tity of commodity i which is used as input by activity j for the production of
commodity k. We could call Z the Flow-Use-System array. If Z were known (of
course, in practical applications it is not), then the Use and Flow matrices could
be easily derived as U = (uij) =

∑n
k=1 zijk and R = (rik) =

∑n
j=1 zijk, respec-

tively. Analogously, we define Zm = (zm
ijk) as the three-dimensional array of the

quantity of imports of commodity i which is used as input by activity j for the
production of commodity k (Import-Flow-Use-System array). Thus, the Import-
Use matrix and Import-Flow matrix we denote as Um = (um

ij ) =
∑n

k=1 zm
ijk and

Rm = (rm
ik) =

∑n
j=1 zm

ijk, respectively. The matrix of import-input coefficients is
then given by Am = (am

ik) = (rm
ik/xk). Similarly, we could define domestic versions

of the above matrices, but need not do so, because they can be formed as differ-
ence (e.g., Ad = A −Am) and everything that is said in the following about the
import-versions applies in a parallel way to the domestic versions.

We can formulate two kinds of import-proportion matrices for commodities
used as inputs, one by activities and one by the produced commodities. The first,
PU = (pU

ij ) = (um
ij /uij), defines the share of imports of commodity i used as input

by activity j in total quantity of commodity i used as input by activity j. The
second, PR = (pR

ik) = (rm
ik/rik), defines the share of imports of commodity i used

as input for the production of commodity k in total quantity of commodity i used
as input for the production of commodity k. (It should be noted that for these
definitions it is necessary to define division of zero by zero as zero.)

Based on this notation we can define three assumptions:

Commodity Technology Assumption (CTA): Producing one unit of com-
modity k always requires the same quantity of commodity i as input, ir-
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respective of the activity in which production is taking place:

zijk/vjk = aik for all i, j and k

Commodity-specific Import-Proportionality Assumption (CSIPA): The
share of imported inputs of commodity i in total inputs of commodity i which
is used for production of commodity k is always the same, irrespective of the
activity in which production is taking place:

zm
ijk/zijk = pR

ik for all i, j and k

Industry-specific Import-Proportionality Assumption (ISIPA): The sha-
re of imported inputs of commodity i used by activity j in total inputs of
commodity i used by activity j is always the same, irrespective of the com-
modity which is produced:

zm
ijk/zijk = pU

ij for all i, j and k

It is not completely obvious which of CSIPA or ISIPA is to prefer from an
economic point of view. The CSIPA has the merit of being conceptually near to
the CTA: if one puts trust in the constancy of aik over different activities, why
shouldn’t one also trust in the constancy of the composition of aik over different
activities? But there is certainly no technical necessity and every activity is free to
substitute imported inputs for domestic inputs and the other way round. Exam-
ples are conceivable that speak for the ISIPA. If both agriculture and construction
industry produce construction services and use sand as input, it is likely that the
former will import a smaller proportion of it than the latter because the latter
is probably nearer to import markets and transport ways. For many inputs the
ISIPA will be a good description of reality. For example, when an activity produces
different commodities and uses bureau machines as input in both production pro-
cesses, it might well need different quantities of them for the production of one unit
of the two produced commodities, but the share of imported bureau machines will
probably be the same in both production processes. We think that the decision
between CSIPA and ASIPA is mainly an empirical problem.

3.2 Construction of the import-flow matrix based on the
CSIPA

The simultaneous validity of CTA and CSIPA amounts to applying the CTA to
import flows, i.e. one assumes that producing one unit of commodity k always
requires the same quantity of imports of commodity i as input, irrespective of the
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activity in which production is taking place: zm
ijk/vjk = am

ik for all i, j and k. This
is proven by transforming

zm
ijk/vjk = (pR

ijzijk)/vjk = pR
ij (vjkaik)/vjk = pR

ijaik = pR
ij (rik/xk)

= (rm
ik/rik)(rik/xk) = rm

ik/xk = am
ik, (10)

where use is made of the CSIPA, the CTA and the defnitions of aik, pR
ij and am

ik

(in that order).
Thus, the simultaneous validity of CTA and CSIPA provides justification for

using
Rm = Um(M′)−1 (11)

for the construction of the import-flow matrix.
However, when we meet a problem with negatives in the flow matrix, it is even

likelier that the negatives appear in the import-flow matrix, too. Applying Almon’s
algorithm to construct the import-flow matrix solves the problem. We denote the
import-flow matrix constructed with Almon’s algorithm by R∗

m. A small flaw of
this approach is that it cannot be said whether the differences between R∗

m and
Rm are caused by deviations from the CTA or by deviations from the CSIPA. More
serious is the problem of inconsistency between the import-flow matrix, domestic-
flow matrix and total flow matrix in that R∗ 6= R∗

m + R∗
d.

Therefore we propose an alternative method for the construction of the import-
flow matrix that proceeds top-down. It takes the total flow matrix and then uses
the CSIPA.

First let us derive the procedure for the case where there is no negatives problem
by transforming (11) as follows:

Rm = (PU ⊗U)(M′)−1 = (PU ⊗ (RM′))(M′)−1, (12)

where we have made use of the definition of PU and of the CTA. For overcoming
the negatives-problem we insert R∗ instead of R and get

R∗
m = (PU ⊗ (R∗M′))(M′)−1 = (PU ⊗U∗)(M′)−1, (13)

Note that equation (13) uses the “New Use” matrix, U∗. The term PU ⊗U∗,
consequently could be called “New Import Use” and denoted by U∗

m.3Equation (13)
then would read as

R∗
m = U∗

m(M′)−1, (14)

The Import Flow matrix R∗
m constructed with equation (13 may still contain

negative elements. Therefore it might be necessary to apply Almon’s algorithm

3We also experimented with an alternative derivation of U∗
m, which is based on solving equa-

tion (8) for R∗, then substituting for R∗ in (9) and finally substituting Um for U. Although
this approach seems promising its development has not yet been completed.
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on the level of the import flow matrix again — this time to correct for deviations
from the CSIPA.

The proposed procedure does not meet the balance property since the row sums
of R∗

m are not necessarily the same as those of Rm. Rescaling each row will solve
this problem.

3.3 Construction of the import-flow matrix based on the
ISIPA

As we have motivated before, the CTA can be combined with the ISIPA without
hurting any theoretical principles. Derivation of the import-flow matrix under the
simultaneous validity of CTA and ISIPA is straightforward:

rm
ik =

n∑
j=1

zm
ijk =

n∑
j=1

zijkp
U
ij =

n∑
j=1

pU
ij vjkaik = aik

n∑
j=1

pU
ij vjk

= (aikxk)
n∑

j=1

pU
ij vjk/xk = rik

n∑
j=1

pU
ij mjk,

which can be expressed in matrix notation by

Rm = A⊗ (PUV) = R⊗ (PUM). (15)

When there is a problem with negatives and the total-flow matrix has been
constructed with the help of Almon’s algorithm, then simply insert R∗ instead of
R and get:

R∗
m = R∗ ⊗ (PUM). (16)

Again, the proposed procedure has the property that the row sums of R∗
m are

not the same as those of Um and again a remedy is rescaling each row accordingly.4

4 Application: Construction of a consistent set

of input-output tables for Austria

4.1 Description of the data and its preparation

The application is based on the Make-Use table for Austria 2001, as published by
Statistik Austria in spring 2005.5 This data source includes, among other informa-
tion, sub-tables for imports and tables on value added (in the dimension activities

4An interesting detail is that the scaling factors for the the CSIPA and ISIPA must be the
same. This is easy to see when considering row-wise formulations of equation (13) and (16). For
the CSIPA the sum of the row vector r∗m is r∗me = (pU ⊗ u∗)(M′)−1e = (pU ⊗ u∗)e = pUu∗′,
where e is a summation vector. For the ISIPA we have r∗me = r∗(pUM)′ = r∗M′p′

U = u∗p′
U.

5Statistik Austria (2005), see also the webpage of Statistik Austria, http://www.statistik.at
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by components) and employment (activities by components). The Austrian Make-
Use system is a particularly challenging application field for the methods we want
to compare because Statistik Austria is very consequent in the compilation of the
tables. Therefore the Austrian Make matrix contains relatively many off-diagonal
elements.

As a first step of the data preparation we carried out aggregation and disag-
gregation of some sectors.6 This step was motivated by the peculiarities of the
Austrian economy and by the intended capabilities of the Austrian INFORUM
model (Böhm and Richter, 2006). The resulting classification has 56 sectors.7

After a first phase of experimentation with the data it was decided that there
are two entries in the Make table that inhibit successful compilation of input-
output, value added and employment tables on a commodity-by-commodity, com-
ponents-by-commodity and categories-by-commodity basis, respectively. These
”problematic areas” are the production of ”Food products and beverages” by
the activity ”Products of agriculture and fishing”, most of which is wine, and
of ”Chemicals, chemical products” by the activity ”Coke, refined petroleum prod-
ucts”. For example, the problems we encountered in these sectors after construc-
tion of the commodity-based tables included relatively large negative entries in
the tables and average wages that differed strongly from the average wages on an
activity basis. We isolated these areas from all the tables and separately translated
them into commodity-based tables, i. e. we applied the ITA to these two entries
of the Make table. At a later stage the tables were added to the other tables to
form the commodity-based overall tables. The applications we discuss in the next
two subsections concern the Make-Use tables we received after isolating the two
problematic areas.

4.2 An overview of the problem of negatives

It is mainly the problem with negative flows that causes all the troubles this part
of our application has to deal with. Therefore in this subsection we want to give
an overview of the relevance of that problem. In Table 1 we report information
on the number and other summary statistics of the negative elements in the Total
Flow matrix R, the Import-Flow matrix Rm and the Domestic Flow matrix Rd

constructed with equations 1 and 11 and Rd = R−Rm.

6CPA 01 ”Products of agriculture, hunting” and CPA 05 ”Fish, other fishing products” were
aggregated to form a new sector ”Products of agriculture and fishing”. CPA 60 ”Land transport
and transport via pipeline services” and CPA 61 ”Water transport services” were aggregated
into ”Land and water transport and transport via pipeline services”. Using more detailed tables
published by Statistik Austria CPA 40 was disaggregated into CPA 40.1 ”Electrical energy” and
the residual sector ”Gas, steam and hot water”.

7See the Appendix for a listing of the sector names and used abbreviations. For simplicity
we use only the names from the commodity classification. It will be clear from the context when
the corresponding activity is meant.
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Table 1: Negative elements in Total, Import and Domestic Flow matrices

Total flow matrix Import flow matrix Domestic flow matrix
N.(< 0) 433 620 448
N.(< −1000) 98 105 55
Sum 563252 (0.32) 527857 (0.95) 280957 (0.23)
Row sums:
Top 1 Wood 80106 (2.18) BasMet 71932 (1.67) Wood 51032 (1.79)
Top 2 SeCuSp 49627 (2.49) SeCuSp 71259 (8.56) GasSHD 29351 (1.79)
Top 3 BasMet 45284 (0.72) Constr 35387 (6.43) AgricF 28730 (0.75)
Top 4 CruOre 40778 (1.25) MachEq 34765 (0.86) BasMet 23958 (1.23)
Column sums:
Top 1 MetPrd 73206 (1.55) Wholes 78795 (5.08) ElecD 37151 (1.44)
Top 2 RadCEq 69077 (2.24) RadCEq 51032 (2.29) RadCEq 35872 (4.15)
Top 3 ElecD 47396 (1.27) MetPrd 44847 (2.43) MetPrd 34137 (1.19)
Top 4 Retail 40022 (0.70) Retail 43139 (6.86) Wholes 25916 (0.31)
All sums are in 1000 EUR. Percentages are in parentheses. Sums and percentage
values should be read as negative values. See the Appendix for the long names of the
commodities.

The analysis summarized in Table 1 shows that negative entries pose a problem
of varying severity depending on the flow matrix considered and whether one looks
at selected rows or columns.8 In the Import-Flow matrix, the problem of negative
elements turns out to be the severest, with 620 negative elements of 3136. In
the Total Flow and Domestic Flow matrix 433 and 448 elements, respectively,
are negative. The Import-Flow matrix surpasses the other two also when only
elements smaller than -1000 EUR are counted. The sum of the negative elements
of the Import-Flow matrix, -528 Mill. EUR comes near the corresponding figure
for the Total Flow matrix. While -0.95 percent of the sum of the Import-Flow
matrix are found in negative elements it is -0.23 percent for the Total Flow matrix
and -0.32 for the Domestic Flow matrix.

This suggests that deviations from CSIPA account for at least two thirds of
the sum of negative elements in the Import Flow matrix and deviations from the
CTA account for at most one third. This is because in the Import-Flow matrix
some of the deviations from the CSIPA could cancel out the effect of deviations
from the CTA. In the case of the Domestic Flow matrix, some of the effects of
deviations from the CTA must have been cancelled out by deviations from the
CSIPA, otherwise the percentage of the sum of negative elements could not be
lower (absolutely) than for the Total Flow matrix.

8Of course, negative elements in the flow matrix can also indicate a problem on the level of
individual cells but this aspect is left aside.
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4.3 Construction of consistent Total Flow, Import-Flow
and Domestic Flow matrices

In this subsection we describe four alternative approaches we used for the construc-
tion of a set of consistent Total Flow, Import-Flow and Domestic Flow matrices.
In all of them we employed the Enhanced Almon’s algorithm in order to avoid
negatives and to incorporate a-priori information in the form of lower bounds for
the elements of the flow matrix.

Besides a-priori information gained from previous steps in the procedure, this
included also a-priori information from common knowledge of production processes
and from published input-output-tables for preceding years. A detailed examina-
tion of the cells of the flow matrices returned by Almon’s algorithm revealed that
many elements were zero, although a-priori information suggested a “small” pos-
itive value. Based on a moderate industry technology assumption we calculated
minimum values for these cells and looked for a way to ensure lower bounds for
the commodity-by-commodity matrix. The Enhanced Almon’s algorithm using a
lower bounds matrix B was found to handle this problem well.9 The lower bounds
matrices for the Total, Import and Domestic Flow matrices contain 12, 4 and 9
elements, respectively, that were greater 1000 EUR. The sums are 53, 13, 40 Mill
EUR, respectively. The maximum values of the lower bound matrices are 7.7, 2.1
and 7.7 Mill. EUR, respectively.

For the construction of a set of Total Flow, Import-Flow and Domestic Flow
matrices10 satisfying R = Rd + Rm we worked out four different approaches:

• bottom-up approach (approach A)

• difference-based approach (approach B)

• top-down approach based on the CSIPA (approach C)

• top-down approach based on the ISIPA (approach D)

The bottom-up approach (A) takes Um and Ud and uses the Enhanced Al-
mon’s algorithm and lower bound matrices Bm and Bd to separately calculate
Rm and Rd. Then the Total Flow matrix is calculated as R = Rm + Rd. It is
guaranteed to have no negative elements. In this approach we use the Enhanced

9As an alternative and for quality control purposes we also proceeded as follows: supply
U−B to Almon’s algorithm and then add B again. This procedure worked about equally well in
comparison with the enhanced Almon’s algorithm. In the case of the Total Flow matrix the lower
bound criteria were fulfilled in an equal manner, concerning those cells where the lower bound
restrictions were effective. In other cells, a total of 3.1 Mill EUR (without double counting) were
allocated in different cells than in the Total Flow matrix constructed with the Enhanced Almon’s
algorithm.

10While in sections 2 and 3 we used the asterisk to indicate that a Flow matrix was constructed
with the help of Almon’s algorithm, here we drop this notation. It will be clear from the context
which kind of construction method the respective Flow matrix is based on.
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Almon’s algorithm to take account not only of deviations from the CTA but also
of deviations from the CSIPA. This might be seen as a disadvantage. However,
using the CTA always implies the assumption of homogeneity of product groups,
which sometimes is far from reality. Imported and domestic goods can be totally
different even though classified in the same product group. Cotton provides a con-
vincing example. Austria is an importer of cotton and unable to substitute own
production for these imports. Therefore it is practical to interpret imported and
domestic goods as different goods in the construction of R, Rm and Rd. Another
advantage of approach A is its great simplicity.

The difference-based approach (B) is somewhat more complicated. It starts
with either Um or Ud. Let us assume we start with Um and denote this variant
with superscript (m). Approach B then uses the enhanced Almon’s algorithm

and Bm to calculate R
(m)
m . Then a new lower bound matrix B(m) is calculated

whose elements are the maximum of the corresponding elements in Bm and Rm.
A first variant of the Total Flow matrix R(m) is calculated based on the Enhanced
Almon’s algorithm and B(m). We get the first variant of the Domestic Flow matrix
as difference, R

(m)
d = R(m) − R

(m)
m . Second variants of the Total, Import and

Domestic Flow matrices, R(d), R
(d)
m and R

(d)
d , are gained by starting with Ud

and proceding analogously as before. We arrive at the final versions by forming
averages R = 0.5(R(m) +R(d)), Rm = 0.5(R

(m)
m +R

(d)
m ) and Rd = 0.5(R

(m)
d +R

(d)
d ).

In the practical application of approach B a further complication arose because
in the calculation of R(d) the Enhanced Almon’s algorithm was not able to fulfill
the lower bound restrictions. In 10 cases the algorithm missed it by more than
1000 EUR and in 5 cases by more than 100000 EUR. With a sum of 13.6 mill.
EUR (0.007 percent of the sum of the Total Flow matrix) we rated this problem
as unimportant and solved it by proportional row-wise redistribution.

The top-down approach based on the CSIPA (approach C) starts with the
calculation of R, using the Enhanced Almon’s algorithm and lower-bound matrix
B. Then we can proceed either with the calculation of a first variant of the
import flow matrix or a first variant of the Domestic Flow matrix. Let us assume
we proceed with the former and denote this variant with superscript (m). We

calculate a new Import-Use matrix U
(m)
m = PU ⊗ (RM′) and then rescale each

row of U
(m)
m such that its row sums are equal to the row sums of Um.11 Then

R
(m)
m is calculated with the Enhanced Almon’s algorithm, using U

(m)
m instead of

Um and using Bm. 12 The first version of the Domestic Flow matrix is obtained as
difference, R

(m)
d = R−R

(m)
m . Proceeding analogously we calculate second versions

11As mentioned in section 3 the scaling factors must be the same for approach C and D, see
the discussion of approach D for more information on the scaling factors.

12It was necessary to use the Enhanced Almon’s algorithm a second time because negative
elements appeared when using R(m)

m = U(m)
m (M′)−1. However, the sum of negative elements in

R(m)
m was only 0.73 percent of the sum of all elements of R(m)

m , i.e. 0.22 percent points less than
based on the original Import-Use matrix.
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of Domestic and Import-Flow matrices, R
(d)
d and R

(d)
m . As before with approach

B, we arrive at the final versions by forming averages of the (m)- and (d)-versions
of the matrices.

In the practical application of approach C we met some obstacles. Some ele-
ments of R

(m)
m were larger than the corresponding elements of R, which would have

implied negative elements in R
(m)
d . The same problem also showed up in R

(d)
d . In

the case of R
(m)
m this problem made up 0.04 percent of the sum of all elements.

In the case of R
(d)
d it was 0.26 percent. We solved the problem by proportional

row-wise redistribution of the offending amounts.13

Like approach C, the top-down approach based on the ISIPA (approach D)
starts with the calculation of R and then proceeds with either the calculation of a
first variant of the Import-Flow matrix or of the Domestic Flow matrix. Assuming
we start with the former and using the superscript (m) for this variant, we calculate

R
(m)
m using equation (16). We need to rescale each row of R

(m)
m such that its row

sums are equal to the row sums of Um. The first version of the Domestic Flow
matrix is obtained as difference, R

(m)
d = R − R

(m)
m . Proceeding analogously we

calculate second versions of Domestic and Import-Flow matrices, R
(d)
d and R

(d)
m .

As with approaches B and C, we arrive at the final versions by forming averages
of the (m)- and (d)-versions of the matrices.

The practical application of this approach did not pose major problems. The
factors for rescaling ranged from 0.9984 to 1.0388 for the (m)-version and from
0.9780 to 1.0304 for the (d)-version. Their means were 1.0034 and 1.0003, re-
spectively. After rescaling some elements of the rescaled matrix were larger than
the corresponding elements in R. To resolve this, we redistributed the offending
amounts on the other cells in the same rows. However, the sum of redistributed
flows was almost negligible.

4.4 Comparison of Total Flow, Import-Flow and Domes-
tic Flow matrices constructed with the four different
approaches

In this subsection we compare the Total Flow, Import-Flow and Domestic Flow
matrices constructed with the four different approaches. The aim of this compar-
ison is merely to say how near to each other the different approaches are. Not
knowing the “true” flow matrices there is no general way to say whether any
approach is better than the other.

The comparison of the differences of the matrices rendered by different ap-
proaches can be carried out on the level of individual rows, columns or even in-
dividual cells. On this level it might be possible to identify inplausibilities in

13Motivated by this problem, we also experimented with a further modification of Almon’s
algorithm that integrated upper-bound restrictions. But this idea turned out not to be practi-
cable.
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Table 2: Comparison of the various approaches for construction of Total Flow,
Import-Flow and Domestic-Flow matrices

Total flow matrix Import flow matrix Domestic flow matrix
Comparison (1) (2) (1) (1) (2)
A vs. B 267922 (0.15) 0.0014 56344 (0.10) 223388 (0.18) 0.0007
A vs. C 461455 (0.26) 0.0025 165416 (0.30) 447022 (0.36) 0.0014
A vs. D 461455 (0.26) 0.0025 1493212 (2.70) 1824291 (1.48) 0.0043
B vs. C 216667 (0.12) 0.0011 125722 (0.23) 244253 (0.20) 0.0008
B vs. D 216667 (0.12) 0.0011 1499119 (2.71) 1643925 (1.34) 0.0038
C vs. D 0 (0.00) 0 1542748 (2.79) 1542748 (1.25) 0.0036
(1) Sum of absolute differences between the two matrices over all elements, sums are
in 1000 EUR, percentages are in parentheses. (2) Mean absolute differences of final
demand multipliers between the models implied by the two matrices.

the results for one or all compared approaches. Problem-areas in the data might
be detected, that motivate returning to the data preparation phase, applying the
industry technology assumption to selected cells, introducing more non-zero ele-
ments in the lower-bound matrices or other modifications. In the present context
a detailed row- or column-wise examination of the differences would lead us to far.
Only a limited comparison on the commodity level is included in the Appendix.

Table 2 contains a comparison of the four approaches on an aggregated level,
i.e. on the level of the flow matrices. Four different approaches and three different
flow matrices means that 18 comparisons can be performed.

Two different ways to compare the matrices are summarized in Table 2. One
kind of comparison sums the absolute differences over all elements of two matrices
compared.14 These sums can be related to the sum of the respective matrix. An-
other kind of comparison looks at the differences in the row sums of the Leontief
inverse matrices, that are formed with the help of the matrices to be compared.
This comparison should reveal the economic relevance of differences. For the im-
port flow matrix this kind of comparison is not available though.

The analysis presented in Table 2 shows that in most cases the differences
are relatively small. Only when approach D is involved in the comparison the
differences exceed 1.2 percent of the respective flow matrix. Otherwise the largest
difference in terms of percentage is 0.36 of the respective matrix. The comparison
based on the sum of absolute differences and on the mean absolute differences
of final demand multipliers is closely aligned. Since the largest mean difference
between final demand multipliers that appears in the Table 2 is 0.0036 one may
conclude that there is only little economically relevant difference between the four
approaches. Approaches A, B and C have relatively small differences between each

14It should be noted that in a certain way this implies double counting. Since the sums of the
matrices compared (or, to be more precise, of each row compared) must be the same a difference
in one cell must have balancing differences in other cells.
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of them.
Approach B has the smallest differences to A and C. It is not clear weather

approach B or C is nearer to approach D, since there is no clear way of aggregating
the differences for the different flow matrices considered. However, even when
neglecting the differences in the Total Flow matrix (0 for the comparison C vs.
D), the sum of the sums of the differences for the other two matrices is smaller in
the comparison C vs. D. Thus approach C rather than approach B seems to be
nearest to approach D.

In addition to the analysis summarized in Table 2, we perform a principal com-
ponent analysis (PCA) to compare the four approaches and calculate the position
of each approach in the two-dimensional space spanned by the first two principal
components. The data set for this PCA contains four observations, corresponding
to the approaches A, B, C and D. The variables are the elements of the flows
matrices to be compared. We consider only those flows, where the difference be-
tween the minimum and the maximum is greater than 100,000 EUR, leaving us
with 255 variables for the Total Flow matrix, 782 variables for the Import-Flow
matrix and 864 variables for the Domestic Flow matrix. Additionally, we perform
a PCA for the merged data set based on the Total Flow matrix and the Domestic
Flow matrix, thus containing 1119 variables.15 The results of these four PCAs are
displayed in Figure 1.

While plot (a) in Figure 1 summarizes the overall differences between the four
approaches, the other three plots only provide something like a decomposition, thus
helping to interpret plot a). Therefore we only discuss plot (a). Note also that in
the plots we used identical ranges on the x- and y-axis in order to communicate
that principal component 1 is much more important than principal component 2
in terms of variance.

The PCA shows that principal component 1 captures primarily the differences
between approach D on the one hand and the other three approaches on the other
hand, i.e. differences between CSIPA- and ISIPA-based approaches. It is not easy
to say what kind of effect the second principal component picks up. On a first view
it seems to correspond to differences between bottom-up and top-down approaches,
but this is not entirely true, since approach D, which is a top-down approach, is
situated in the middle with respect to principal component 2.

The PCA corroborates the impression gained from Table 2. Approach B is
situated between approaches A and C, while approach D is far away. In terms
of euclidean distance based on the first two principal components approach C is
slightly nearer to approach D than is approach C. With this exception approach
B is situated nearest to all others.

15It is not necessary to merge the data sets based on all three flow matrices, since the Import-
Flow matrix is linearly dependent on the other two matrixes. For the same reason a PCA on the
merged dataset based on the Total Flow matrix and the Import-Flow matrix or a PCA on the
merged dataset based on the Domestic Flow matrix and the Import-Flow matrix produces the
same results as the ones for the merged dataset chosen by us.
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(a) Total flow and domestic flow matrix
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(c) Import flow matrix
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(d) Domestic flow matrix

Figure 1: Principal Component Analysis (PCA) for the comparison of four ap-
proaches for the construction of a consistent set of flow matrices

4.5 Construction of commodity-by-component Value Added
and commodity-by-categories Employment matrices

The construction of component-by-commodity Value Added and category-by-com-
modity Employment matrices involves problems similar to the ones discussed in the
previous subsection. A problem with negative elements must be avoided and the
matrices have to be consistent within themselves. Again, the Enhanced Almon’s
algorithm offers a practicable way to ensure these properties.

The raw tables for Value Added are in dimension component-by-activity. The
six components are:

Wages and salaries
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Employers’ social contributions
Other taxes on production
Other subsidies on production
Consumption of fixed capital
Operating surplus, net

Among these components, Other subsidies on production is non-positive and
Operating surplus, net contains negative values. Operating surplus, net, as a resid-
ual, requires special treatment for theoretical reasons. As an intermediate step we
formed a modified Value Added matrix, in which we replaced Other subsidies on
production by its absolute values and Operating surplus, net by Operating surplus,
net + Consumption of fixed capital.

Using the formula analogous to equation (1),

Wc = Wa(M
′)−1, (17)

where Wc is the modified Value Added matrix in dimension component-by-commo-
dity and Wa is the modified Value Added matrix in dimension component-by-
activity, we analyse the relevance of negative elements in Wc.

There are only 3 elements in Wc, in component Other subsidies on production.
The sum of these negative elements is -9,2 Mill. EUR or -0.27 percent of the sum
of Other subsidies on production.

To calculate Wc without negatives, we used the Enhanced Almon’s algorithm,
then performed the modifications backward, i.e. changing the sign of Other subsi-
dies on production back to negative again and calculating Operating surplus, net
as difference.

The final version of the component-by-commodity Value Added matrix must
fulfil the IO balance equation:

x′ = e′R + e′Wc, (18)

where e is a summation vector. To ensure this restriction we applied RAS to Wc.
An alternative procedure would have been to apply RAS to the matrix [R′ W′

c]
′,

i.e. the appropriately stacked matrix.
The raw tables for Employment are in dimension activity-by-category. The six

categories are:

Jobs Self-employed persons
Jobs Employees
Jobs Total
Full-time equivalence Self-employed persons
Full-time equivalence Employees
Full-time equivalence Total
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At calculating the category-by-commodity Employment matrix we have to take
account of the restriction that Totals must equal Self-employed persons + Employ-
ees and that Full-time equivalences (FTE) must be smaller than Jobs. This was
ensured by the following procedure:

(i) calculate commodity-based FTE Self-employed persons and FTE Employees
by using the Enhanced Almon’s algorithm,

(ii) calculate commodity-based Jobs Self-employed persons and Jobs Employees
by using the Enhanced Almon’s algorithm and supplying commodity-based
FTE Self-employed persons and FTE Employees as lower-bounds,

(iii) calculate Totals as sums of Self-employed persons and Employees.

The close inspection of the component-by-commodity Value Added and category-
by-commodity Employment matrices offers many ways to check for plausibility. In
an early phase of the data preparation we detected large differences between Wages
and salaries per Jobs Employees when comparing commodity-based and activity-
based values. Such implausible results induced us to return to the data preparation
phase.

5 Conclusions

In this paper we presented methods and procedures for the construction of a con-
sistent set of input-output tables. It was shown that many restrictions must be
taken account of. Among these the most prominent is certainly the avoidance of
negative elements, but other aspects can pose even harder to solve problems.

In an application to Austria the practicability of the presented methods and
procedures was demonstrated. This application was done within the framework of
the new Austrian INFORUM model.

The presented methods and procedures form only a part of an iterative process.
When problems turn up at a later phase of the task, it may be necessary to return
to the data preparation phase. The appearance of negative elements may indicate
deeper problems in the data. Other plausibility checks are essential, too. The
process of constructing a consistent set of input-output tables requires much effort
on a detailed level.

Particular emphasis was put on the problem of constructing a consistent set
of Total Flow, Import-Flow and Domestic-Flow matrices. It was mainly the com-
plexity of this task that motivated us to further develop Almon’s algorithm. The
Generalized and Enhanced Almon’s algorithm presented in section 2 is a valuable
tool for the “automatic” compliance with lower bound restrictions. We analysed
four different approaches, one bottom-up, two different top-down approaches and
a difference-based approach. From a theoretical perspective all of these approaches
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are correct. They are all in accordance with the Commodity Technology Assump-
tion. In the application the four approaches did not yield very different Total
Flow, Import-Flow and Domestic-Flow matrices in terms of economic relevance.

We do not know the “true” flow matrices. Therefore there is no way to say
which approach is the best. We presented a comparison that demonstrated how far
from each other the different approaches are. This may guide the practicionner in
his or her decision what approach to use. It is also possible to mix these approaches
and the mixture-ratios can be varied for each sector. Taken as a whole we think
that the repertoire we have developed in this paper offers additional convenience
at the task of compiling a consistent set input-output matrices.
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Böhm, B. and Richter, J. (2006). AEIOU – towards a new Austrian INFORUM
model. Paper for the 14th International INFORUM Conference, Traunkirchen,
Austria, September 2006.

Bohlin, L. and Widell, L. M. (2006). Estimation of commodity-by-commodity
matrices. Economic Systems Research, 18(2), 205–215.

Kop Jansen, P. and ten Raa, T. (1990). The choice of model in the construction
of input-output coefficients matrices. International Economic Review, 31(1),
213–227.

Parve, R. (2004). Derivation of product-by-product IO matrices using PTP and
treatment of secondary production. Paper for the 12th International INFORUM
Conference, Ascea, Italy, September 2004.

ten Raa, T. and Rueda-Cantuche, J. M. (2003). The construction of input-output
coefficients matrices in an axiomatic context: Some further considerations. Eco-
nomic Systems Research, 15(4), 439–455.

Statistik Austria (2005). Aufkommens- und Verwendungstabelle. Vienna: Statistik
Austria.

21



6 Appendix

Table 3: Classification of commodities and used abbreviations

Abbr. CPA-Code Description
AgricF 01+05 Products of agriculture and fishing
Forest 02 Products of forestry
CoalLP 10 Coal and lignite; peat
CruOre 11 Crude petroleum, natural gas, metal ores
MinQua 14 Other mining and quarrying products
FoodBe 15 Food products and beverages
Tobacc 16 Tobacco products
Textil 17 Textiles
Appar 18 Wearing apparel; furs
Leathe 19 Leather and leather products
Wood 10 Wood and products of wood
Paper 21 Pulp, paper and paper products
PrintM 22 Printed matter and recorded media
RefPet 23 Coke, refined petroleum products
Chem 24 Chemicals, chemical products
RubbPl 25 Rubber and plastic products
GlassC 26 Other non-metallic mineral products
BasMet 27 Basic metals
MetPrd 28 Fabricated metal products
MachEq 29 Machinery and equipment n.e.c.
OfMach 30 Office machinery and computers
ElecMA 31 Electrical machinery and apparatus
RadCEq 32 Radio, TV and communication equipment
MedIns 33 Med., precision, opt. instruments; watches, clocks
MotVeh 34 Motor vehicles, trailers and semi-trailers
OthTra 35 Other transport equipment
FurOth 36 Furniture; other manufactured goods n.e.c.
Recov 37 Recovered secondary raw materials
ElecD 40.1 Electrical energy
GasSHD 40.2+40.3 Gas, steam and hot water
WaterD 41 Water; distribution services of water
Constr 45 Construction work
TRMotV 50 Trade and repair services of motor vehicles etc.
Wholes 51 Wholesale and comm. trade serv., ex. of motor vehicles
Retail 52 Retail trade serv., repair serv., exept of motor vehicles
HotRes 55 Hotel and restaurant services
TransW 60+61 Land and water transport and transport via pipeline services
AirTra 62 Air transport services
SeTra 63 Supporting transport services; travel agency services
SeTele 64 Post and telecommunication services
SeFIM 65 Financial intermediation services (ex. insurance serv.)
SeInsu 66 Insurance and pension funding services
SeAFIM 67 Services auxiliary to financial intermediation
SeReal 70 Real estate services
SeRent 71 Renting services of machinery and equipment
SeComp 72 Computer and related services
RnD 73 Research and development services
SeBus 74 Other business services
SePubA 75 Public administration services etc.
EduSer 80 Education services
SeHeal 85 Health and social work services
Sewage 90 Sewage and refuse disposal services etc.
SeOrga 91 Membership organisation services n.e.c.
SeCuSp 92 Recreational, cultural and sporting services
SeOth 93 Other services
SePrHH 95 Private households with employed persons
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Table 4: Comparisons A vs. B, A vs. B and B vs. C for selected product groups

CPA Product Group A vs. B A vs. C B vs. C
Total Flow matrix:
01+05 AgricF 16112 (0.34) 20982 (0.45) 4881 (0.10)
21 Paper 20070 (0.54) 38966 (1.04) 19316 (0.52)
26 GlassC 5371 (0.14) 9178 (0.25) 4093 (0.11)
27 BasMet 43807 (0.70) 80903 (1.29) 37646 (0.60)
40.1 ElecD 14390 (0.27) 24508 (0.46) 12157 (0.23)
45 Constr 46395 (0.53) 70766 (0.81) 35499 (0.41)
51 Wholes 14086 (0.14) 22844 (0.23) 11197 (0.11)
52 Retail 8180 (0.45) 15560 (0.86) 7763 (0.43)
60 TransW 5090 (0.09) 8451 (0.16) 4224 (0.08)
62 AirTra 17700 (0.93) 34252 (1.80) 17129 (0.90)
71 SeRent 5164 (0.14) 8849 (0.23) 4424 (0.12)
92 SeCuSp 35840 (1.8) 67408 (3.39) 33704 (1.69)
Import-Flow matrix:
01+05 AgricF 9985 (1.15) 14047 (1.62) 4508 (0.52)
11 CruOre 608 (0.02) 19504 (0.68) 19586 (0.68)
10 Wood 803 (0.10) 3042 (0.37) 3603 (0.44)
21 Paper 773 (0.04) 13866 (0.71) 13307 (0.69)
27 BasMet 18533 (0.43) 31648 (0.74) 17364 (0.40)
29 MachEq 1082 (0.03) 4965 (0.12) 5393 (0.13)
32 RadCEq 1893 (0.08) 6002 (0.27) 5064 (0.23)
34 MotVeh 877 (0.02) 3943 (0.08) 3070 (0.06)
36 FurOth 1228 (0.18) 3381 (0.50) 2568 (0.38)
51 Wholes 3992 (0.46) 8835 (1.02) 6563 (0.76)
62 AirTra 1415 (0.20) 7203 (1.01) 6268 (0.88)
92 SeCuSp 6473 (0.78) 19526 (2.35) 13053 (1.57)
Domestic Flow matrix:
01+05 AgricF 6139 (0.16) 9007 (0.24) 2890 (0.08)
11 CruOre 24 (0.01) 19668 (5.03) 19672 (5.04)
21 Paper 19483 (1.08) 37465 (2.08) 18733 (1.04)
26 GlassC 4589 (0.18) 9767 (0.39) 5345 (0.21)
27 BasMet 27739 (1.42) 54598 (2.80) 27444 (1.41)
40.1 ElecD 14390 (0.32) 24508 (0.55) 12123 (0.27)
45 Constr 46395 (0.57) 70766 (0.87) 35385 (0.43)
51 Wholes 11422 (0.13) 22014 (0.25) 11007 (0.12)
52 Retail 8180 (0.47) 15560 (0.89) 7762 (0.44)
62 AirTra 17126 (1.44) 33659 (2.84) 16829 (1.42)
71 SeRent 4425 (0.13) 8845 (0.25) 4422 (0.13)
92 SeCuSp 33704 (2.91) 67408 (5.83) 33721 (2.92)
For every type of flow matrix only those product groups are included
in the table where at least one of the comparisons made yields a
value greater than a specific value which is chosen such that exacly
12 product groups are included. The values are the sums of absolute
differences between corresponding rows of the matrices resulting from
the approaches to be compared. Sums are in 1000 EUR. Percentages
are in parentheses.
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Table 5: Comparisons A vs. D, B vs. D and C vs. D for selected product groups

CPA Product Group A vs. D B vs. D C vs. D
Total Flow matrix:
01+05 AgricF 20982 (0.45) 4881 (0.10) 0 (0)
21 Paper 38966 (1.04) 19316 (0.52) 0 (0)
26 GlassC 9178 (0.25) 4093 (0.11) 0 (0)
27 BasMet 80903 (1.29) 37646 (0.60) 0 (0)
40.1 ElecD 24508 (0.46) 12157 (0.23) 0 (0)
45 Constr 70766 (0.81) 35499 (0.41) 0 (0)
51 Wholes 22844 (0.23) 11197 (0.11) 0 (0)
52 Retail 15560 (0.86) 7763 (0.43) 0 (0)
60+61 TransW 8451 (0.16) 4224 (0.08) 0 (0)
62 AirTra 34252 (1.80) 17129 (0.90) 0 (0)
71 SeRent 8849 (0.23) 4424 (0.12) 0 (0)
92 SeCuSp 67408 (3.39) 33704 (1.69) 0 (0)
Import-Flow matrix:
01+05 AgricF 51511 (5.96) 41744 (4.83) 39663 (4.59)
21 Paper 42253 (2.18) 42976 (2.21) 49927 (2.57)
24 Chem 93871 (1.59) 93754 (1.59) 94118 (1.60)
25 RubbPl 61309 (2.53) 61252 (2.52) 61229 (2.52)
27 BasMet 76793 (1.78) 73567 (1.71) 70773 (1.64)
28 MetPrd 107310 (4.35) 107327 (4.35) 107356 (4.35)
29 MachEq 152202 (3.76) 153245 (3.78) 156394 (3.86)
31 ElecMA 88920 (3.09) 88920 (3.09) 88920 (3.09)
51 Wholes 143301 (16.57) 147179 (17.02) 151427 (17.51)
55 HotRes 125045 (11.18) 125065 (11.18) 126034 (11.26)
62 AirTra 43622 (6.10) 44597 (6.24) 49964 (6.99)
74 SeBus 106177 (4.87) 106858 (4.90) 107561 (4.94)
Domestic Flow matrix:
21 Paper 80624 (4.48) 61439 (3.42) 49927 (2.78)
24 Chem 94832 (12.48) 94197 (12.40) 94118 (12.39)
27 BasMet 109447 (5.61) 88658 (4.55) 70773 (3.63)
28 MetPrd 107497 (2.66) 107404 (2.66) 107356 (2.66)
29 MachEq 154302 (9.32) 153252 (9.26) 156394 (9.45)
31 ElecMA 88920 (7.88) 88920 (7.88) 88920 (7.88)
45 Constr 76973 (0.94) 38452 (0.47) 6220 (0.08)
51 Wholes 163296 (1.82) 153271 (1.71) 151427 (1.69)
55 HotRes 129200 (7.45) 127123 (7.33) 126034 (7.27)
62 AirTra 76594 (6.46) 60079 (5.07) 49964 (4.21)
74 SeBus 110144 (0.84) 108160 (0.82) 107561 (0.82)
92 SeCuSp 78946 (6.82) 51371 (4.44) 43410 (3.75)
For every type of flow matrix only those product groups are included in
the table where at least one of the comparisons made yields a value greater
than a specific value which is chosen such that exacly 12 product groups
are included. The values are the sums of absolute differences between
corresponding rows of the matrices resulting from the approaches to be
compared. Sums are in 1000 EUR. Percentages are in parentheses.
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