
Interdyme Basics

VAM.CFG File for the TINY Model

1995 2010
#name Rows Cols Lags Row names Column names Comment
FM 8 8 0 sectors.ttl sectors.ttl #Input-output flow matrix
AM 8 8 0 sectors.ttl sectors.ttl #Input-output coeff matrix
LINV 8 8 0 sectors.ttl sectors.ttl # Leontief inverse
out 8 1 0 sectors.ttl # Output
pce 8 1 0 sectors.ttl # Personal consumption expenditure
gov 8 1 0 sectors.ttl # Government spending
inv 8 1 0 sectors.ttl # Investment
ex 8 1 0 sectors.ttl # Exports
im 8 1 0 sectors.ttl # Imports
fd 8 1 0 sectors.ttl # Total final demand
dep 8 1 0 sectors.ttl # Depreciation
lab 8 1 0 sectors.ttl # Labor income
cap 8 1 0 sectors.ttl # Capital income
ind 8 1 0 sectors.ttl # Indirect taxes
depc 8 1 0 sectors.ttl # Depreciation coef
labc 8 1 0 sectors.ttl # Labor income coef
capc 8 1 0 sectors.ttl # Capital income coef
indc 8 1 0 sectors.ttl # Indirect taxes coef
x 8 1 0 sectors.ttl # Working space
y 8 1 0 sectors.ttl # Working space

To create a vam file from a vam configuration file the command in G is

vamcreate <vam configuration file> <vam file>

To create the vam file HIST.VAM from the configuration file VAM.CFG, the command is

vamcreate vam.cfg hist

The newly created vam file is all zero. To work with it, we assign it as a bank:

vam <filename> <letter name of bank>

For example,

vam hist b

Most commands for working with VAM files use the default VAM file.
It is specified by the "dvam" command

dvam <letter name of bank>

For example

dvam b

The usual ways to introduce data into a VAM file
are with the

matin command for matrices
and the

vmatdat command for vectors.

The next three slides show examples for TINY.

The Flows.dat File for Introducing the Input-Output Flow Matrix
into the VAM File

matin FM 1995 1 8 1 8 15
Agricul Mining Elect Mfg Commerce Transp Services Govt
Agriculture 20 1 0 100 5 0 2 0
Mining 4 3 20 15 2 1 2 0
Electricity 6 4 10 40 20 10 25 0
Manufacturing 20 10 4 60 25 18 20 0
Commerce 2 1 1 10 2 3 6 0
Transportation 2 1 5 17 3 2 5 0
Services 6 3 8 45 20 5 20 0
Government 0 0 0 0 0 0 0 0

The FD.dat File for Introducing the Final Demands into the VAM File

vmatdata c 5 1 1 8 15
c means the vectors are in columns
there are 5 columns
there is 1 year
each column runs from sector 1 to 8
skip 15 spaces before data
1995 pce gov inv ex im
The year is 1995
The vector names are pce, gov, inv, ex, im
PersCon Gov Invest Exports Imports
Agriculture 15 1 0 40 -20
Mining 2 1 0 10 -10
Electricity 80 10 0 0 0
Manufacturing 400 80 200 120 -170
Commerce 350 10 6 10 0
Transportation 130 20 8 5 0
Services 500 40 10 30 -20
Government 0 150 0 0 0

The VA.DAT File for Introducing the Value-added Vectors

vmatdata r 4 1 1 8 15
r means the vectors are in rows
There are 4 vectors
For 1 year
The first sector is 1 and the last 8
Skip 15 places before beginning to read free-form data
1995 dep lab cap ind
1 2 3 4 5 6 7 8
Depreciation 11 5 60 130 35 40 25 0
Labor 65 20 21 260 140 97 485 150
Capital 20 2 56 60 40 12 59 0
Indirect tax 8 0 20 50 109 10 18 0

G commands to create the VAM file
and load the data into it:

Create and load the VAM file for TINY
vamcreate vam.cfg hist
vam hist b
dvam b
Bring in the intermediate flow matrix
add flows.dat
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat

DISPLAY OF MATRIX DATA

Show the FM Matrix for year 1995
show FM y 1995
Show FM matrix row 2 for all years
show FM r 2
show FM matrix column 5 for all years
show FM c 5
Show ind (indirect tax) vector for all years
show ind # Display the indirect tax vector
#Show pce vector from bank b
show b.pce # Display the personal consumption expenditure vector

CALCULATE INPUT-OUTPUT COEFFICIENTS
Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
show b.out

Copy the flow matrix, stored in FM, to AM
fdates 1995 1995
mcopy b.AM = b.FM
Can be simplified to
mcopy AM FM
Calculate input-output coefficients
coef AM out
show AM y 1995
Create value-added coefficient vectors.
vc labc = lab/out
vc capc = cap/out
vc indc = ind/out
Set fdates back to the entire range of the VAM file.
fdates 1995 2010

COPY THE COEFFICIENT MATRICES TO OTHER YEARS

We use the index command to move these coefficient matrix
and vectors to other years.

index <base year> <guide series> <matrix or vector>

It operates over the range specified by the current value of the fdates.
Since we just want to copy the coefficients to all the years, our guide series
will be simply a series of 1's, which we shall call one. Here are the commands:

Copy the 1995 AM matrix into 1996 - 2010
dfreq 1
f one = 1.
index 1995 one AM

index 1995 one depc
index 1995 one labc
index 1995 one capc
index 1995 one indc

show AM c 1

MAKE UP A PATH FOR FUTURE FINAL DEMAND

Create a time trend
f time = @cum(time,one,0)
Make all final demand vectors grow by 3 percent per year
f g03 = @exp(.03*(time-1))
gr g03
Create waves, the guide series for the investment vector
f waves = g03 + .3*@sin(time-1)
gr waves
index 1995 g03 pce
index 1995 g03 gov
index 1995 waves inv
index 1995 g03 ex
index 1995 g03 im
show inv
Add up the final demands
vc fd = pce+gov+inv+ex+im
show fd

THE LEONTIEF INVERSE COMMAND

The new command

linv <square matrix> [year]

converts the square matrix into its Leontief inverse. If the optional year is
omitted, it works over the fdates range.

USE THE NEW LINV COMMAND TO TAKE THE LEONTIEF INVERSE
Take the Leontief inverse of the A matrix
mcopy LINV = AM
linv LINV
show LINV y 1995

Compute total outputs
vc out = LINV*fd
show b.out

With the outputs known, we can compute the implied value-added of each type
by each industry with the following commands. In them, the vc command
will recognize that the dimensions of the vectors on the right are such that
element-by-element multiplication makes sense and perform it.

Compute Value added
The following are element-by-element multiplication
vc dep = depc*out
vc lab = labc*out
vc cap = capc*out
vc ind = indc*out
show lab

MAKE INDUSTRY LEVEL GRAPHS WITH fadd COMMAND

fadd graphs.fad sectors.ttl

Where graphs.fad is
vr 0
ti %3 %5
subti Output and Final demand
gname out%3
gr b.out%3 b.fd%3
subti Depreciation,Labor income, Capital income, Indirect taxes
gname va%3
gr b.dep%3 b.lab%3 b.cap%3 b.ind%3
ti
subti

And sectors is:
Agricul ;1 e "Agriculture"
Mining ;2 e "Mining and quarrying"
Elect ;3 e "Electricity and gas"
Mfg ;4 e "Manufacturing"
Commerce ;5 e "Commerce"
Transport ;6 e "Transportation"
Services ;7 e "Services"
Government ;8 e "Government"

4 Manufacturing4 Manufacturing
 Output and Final demand

 1278

 639

 0

1995 2000 2005 2010
 b.out4 b.fd4

4 Manufacturing4 Manufacturing
 Depreciation, Labor income, Capital income, Indirect taxes

 422

 211

 0

1995 2000 2005 2010
 b.dep4 b.lab4 b.cap4 b.ind4

OTHER MATRIX COMMANDS NOW IN G

minv A converts A into its inverse
madd A = B + C adds B and C and stores in A
madd A = B - C subtracts C from B and stores result in A
mmul A = B*C multiply B and C and store result in A
mmul A = B’C multiplies B transpose by C and stores result in A
mmul A = B&C does element-by-element multiplication of B and C and stores in A
mmul A = B/C element-by-element division of B by C stored in A
mtrans A B the transpose of B is stored in A

MAKING TABLES WITH A MULTISECTORAL MODEL

The TINY.STB File – top third

\dates 1995 2000 2005 2010 1995-2000 2000-2005 2005-2010
\pages off
\noformat
\title TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

; out Output of Industries
&
out1 ;1 Agriculture
out2 ;2 Mining and quarrying
out3 ;3 Electricity and gas
out4 ;4 Manufacturing
out5 ;5 Commerce
out6 ;6 Transportation
out7 ;7 Services
out8 ;8 Government
;

MAKING TABLES WITH A MULTISECTORAL MODEL

The TINY.STB File – middle third

\add tiny.tab pce "Personal Consumption Expenditure"
;
\add tiny.tab gov "Government Expenditures"
;
\add tiny.tab inv "Investment by Supplying Industry"
;

The TINY.TAB File

; %1 %2
&
%11 ;1 Agriculture
%12 ;2 Mining and quarrying
%13 ;3 Electricity and gas
%14 ;4 Manufacturing
%15 ;5 Commerce
%16 ;6 Transportation
%17 ;7 Services
%18 ;8 Government

MAKING TABLES WITH A MULTISECTORAL MODEL

The TINY.STB File – bottom third

The next line forces a new page
*
\matcfg Matlist.cfg
\center Matrix Listing
\row
\cutoff .001
\matlist 1-8

TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

Matrix Listing

Seller: 1 Agriculture
1995 2000 2005 2010 95-00 00-05 05-10

Sales to Intermediate
1 Agriculture 20.0 22.1 26.3 32.2 2.0 3.5 4.0
2 Mining and quarrying 1.0 1.1 1.3 1.6 2.3 3.4 3.7
4 Manufacturing 100.0 107.9 130.3 162.4 1.5 3.8 4.4
5 Commerce 5.0 5.8 6.7 7.9 2.9 3.1 3.1
7 Services 2.0 2.3 2.7 3.2 2.8 3.1 3.2

SUM: Intermediate 128.0 139.2 167.4 207.2 1.7 3.7 4.3
Sales to Final Demand

Personal consumption expenditure 15.0 17.4 20.2 23.5 3.0 3.0 3.0
Government consumption 1.0 1.2 1.3 1.6 3.0 3.0 3.0
Exports 40.0 46.5 54.0 62.7 3.0 3.0 3.0
Imports -20.0 -23.2 -27.0 -31.4 3.0 3.0 3.0
Output 164.0 181.0 216.0 263.7 2.0 3.5 4.0

Seller: 2 Mining and quarrying
1995 2000 2005 2010 95-00 00-05 05-10

Sales to Intermediate
1 Agriculture 4.0 4.4 5.3 6.4 2.0 3.5 4.0
2 Mining and quarrying 3.0 3.4 4.0 4.8 2.3 3.4 3.7
3 Electricity and gas 20.0 22.8 26.7 31.7 2.6 3.2 3.4
4 Manufacturing 15.0 16.2 19.5 24.4 1.5 3.8 4.4
5 Commerce 2.0 2.3 2.7 3.1 2.9 3.1 3.1
6 Transportation 1.0 1.1 1.3 1.6 2.6 3.2 3.4
7 Services 2.0 2.3 2.7 3.2 2.8 3.1 3.2

SUM: Intermediate 47.0 52.5 62.2 75.1 2.2 3.4 3.8
Sales to Final Demand

Personal consumption expenditure 2.0 2.3 2.7 3.1 3.0 3.0 3.0
Government consumption 1.0 1.2 1.3 1.6 3.0 3.0 3.0
Exports 10.0 11.6 13.5 15.7 3.0 3.0 3.0
Imports -10.0 -11.6 -13.5 -15.7 3.0 3.0 3.0
Output 50.0 56.0 66.3 79.8 2.3 3.4 3.7

The MATLIST.CFG File for TINY

Matrix listing identity;out=AM*out+pce+gov+inv+ex+im
Title file name for the rows of out, the lefthand side vector
out; "sectors.ttl"
Title file names for matrix columns
AM; "sectors.ttl"
headers for each term
header for out; "Output"
header for AM*out; "Intermediate"
header for pce; "Personal consumption expenditure"
header for gov; "Government consumption"
header for inv; "Investment"
header for ex; "Exports"
header for im; "Imports"

And finally,

Interdyme ….

USER.H

// USER.H -- Put here any includes that refer to the user model
// From DYME.CFG and opening screen:
GLOBAL char RunTitle[80],CfgFileName[80],VamFileName[80],

GbankName[80],VecFixFileName[80],MacFixFileName[80];
GLOBAL char* outfix; // Determines how Seidel will determine output

// Vector declaration:
GLOBAL Vector out,pce,gov,inv,ex,im,fd,
dep,depc,lab,labc,cap,capc,ind,indc,x,y;

// Matrix declaration
GLOBAL Matrix AM;

GLOBAL IVector triang;

In LOOP() Function of Model.cpp

// Vectors

out.r("out");pce.r("pce");gov.r("gov");
inv.r("inv");ex.r("ex");im.r("im");fd.r("fd");dep.r("dep");
depc.r("depc"),lab.r("lab");labc.r("labc");cap.r("cap");
capc.r("capc"),ind.r("ind");indc.r("indc");x.r("x");
y.r("y");

// Matrices
AM.r("AM");

INTERDYME CODE FOR TINY

for (t = godate; t<= stopdate; t++) {
// Load all vectors and matrices.
load(t);
// Particular to TINY:
fd = pce + gov + inv + ex + im;
Seidel(AM, out, fd, triang, toler);
dep = ebemul(depc,out);
lab = ebemul(labc,out);
cap = ebemul(capc,out);
ind = ebemul(indc,out);

// General end of the spin() function:
if(MaxFlag == 'y')

shiftback(t);
else{

// Store the values of vectors and matrices.
store(t);
printf("\n");
}

}

