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1. Introduction

The background for building the Danish DANDY model is that analysis of the economic effects of
environmental policies in the direction of a more sustainable economy requires a large scale
macroeconometric model preferably based on input output. Some of the environmental goals that an
economy such as the Danish have or should have can only be achieved after quite substantial structural
changes. We need a substitution away from the most polluting processes towards more environmentally
friendly use of the resources. To achieve this it will be necessary to invoke considerable changes in
certain consumption and production processes. Some of such changes could be introduced in the
model by heavy taxation or the creation of markets for pollution permits. For the model to handle such
economic incentives to e.g. substitute away from the use of energy and energy intensive productions
and products towards labour, which is less polluting but probably, more costly, it must be able to
describe the substitution and the change in substitution effects over time.

For private consumption there is a system such as PADS that will ensure that if the relative price of
some of the consumption goods increases there will be a substitution away from these goods towards
less expensive ones.  This is done in a consistent manner that will secure that the total budget is not
exceeded. Something similar is needed for the production side of the model. The best way to do it here
is probably a full system of factor demands.

Therefore the following paper is devoted to a description of the first parts of such a factor demand
system.

2. Theoretical starting point

In order to describe the theoretical background for working with production, it is common to say that
companies maximise their profits. Here we will start by assuming that companies minimise their costs,
which is a necessary first, but not necessarily sufficient, step on the road to profit maximisation. We will
look at the factor demands as contingent on the production Y. Thus we will focus on how firms will
seek to minimise their costs of production factors given a certain level of production.

We start out with the following production function

),,,( MELKFY = (1)

Thus capital, labour, energy and materials are used to produce Y

The total costs of this production is

MPEPLPKPC MELK +++= (2)

Now we want to find the levels of the input factors K,L,E,M that minimizes the costs of production.
This will in general give us the following equations
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Now if we take (2) and define the minimum costs as the costs the industry has, given that the factors of
production has adapted to their optimal (cost minimizing) levels we get

),,,,(******
MELKMELK PPPPYCMPEPLPKPC =+++=   (4)

Now we see that the minimum costs only depend on the production level and the factor prices. This is
so, because K*, L*, E*, M* disappears when (3) is substituted into (4).

For a number of functional forms (1) and (4) is called dual, since they contain exactly the same
information and describe the production technology (the isoquants) to the same extent.

The reason that we are interested in the optimal cost function is that by using Shepards lemma that
says, that the cost-minimising input vector is just given by the derivatives of the of the cost function with respect to the
prices, we can get the factor demand equations
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Thus the cost function should be differentiated with respect to the price of the factor in question. So
we see that by using Shepards lemma on the costfunctions we can get the same functions as can be
derived from the production function (3). This is due to the duality.

The good thing about starting with the cost function is that it is often a lot eaiser to derive the factor
demand equation from, compared to the production function, where you would often have so solve
some nasty first order conditions.

Choice of functional form
In order to estimate the equations (5) we must first choose a functional form that can contain these
equations. There are a lot of such functional forms available on the market, some of which are CES,
Translog and Generalized Leontief. There are also a lot of aspects embedded in the discussion of which
functional form to choose.

For instance to my knowledge only the CES function is globally consistent, meaning that the isoquants
will not cross the axes and one will not get negative demand for any factor no matter how much the
relative prices changes. Investigations by (Thomsen, 1999) show that both Translog and GLO can be
shown to behave badly for some combinations of the elasticity of substitution and change in relative
prices. Translog behaves badly for low values of substitution (0.5 and below) and both GLO and
translog for values of the elasticity of substitution of about 2 and above.

I have tried to work some with the Translog system based on papers by among others Urga (1999), but
never really succeded. Probably because a Translog system – especially if some dynamics is attached to
it – requires a LOT of parameters to be estimated. It probably would be the best to use quarterly data
for such an exercise. So based on that experience and the relatively bad curvature behavior of the
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isoquants of the Translog system around the substitution elasticities of 0.5 or lower (Thomsen, 1999), I
ended up choosing the GLO system.

The GLO system
The cost function of a GLO system with 4 factors has 16 terms

[ ]5.05.05.05.05.05.05.05.0* ..... MMMMKLLKLKKLKKKK PPPPPPPPYC ββββ ++++= (6)

All the 12 off-diagonal parameters (βLK and βKL etc.) are pairwise equal – or they have the same
regressors so they should not be identified as different. In an unrestricted estimation they will show up
quite different, but there is nothing that can justify such behavior, as they have the same regressors). So
that brings us down to 10 parameters to be estimated.

According to Shepards Lemma the factor demand equation can be obtained by differentiating this cost
function with respect to the factor prices to get
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The parameter on the diagonal βii can be thought of as the "minimum io-coefficient" which the
consumption cannot go under. So they should not be negative. If one or more of the β ij's gets to be
negative, we have a problem, because a large change in the relative prices could drive the consumption
negative. Therefore if all β 's are positive we are sure to have a globally consistent system.

This system has some easy-to-calculate price elasticities. They come as the result of differentiating each
of the factor demand equations with respect to the 4 prices and then multiplying by the price over the
level of the factor in question. That is a collection of 16 elasticities of which some examples are
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The eij 's tell us about possible complementarity (eij <0) between the factors. It is very often seen that
capital and energy are complements, meaning that if the capital input must be increased then energy
must also be increased in order to keep the machines running, at least in the short run. The system will
be consistent, however, even with some negative eij 's as long as the relative prices do not change too
much.

Now it would be nice to see what we can get out of this framework. But first we need some data to
estimate on.
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3. The Data

For the final estimations of a set of Danish factor demand equations we need 10 different time series,
namely the four factors in fixed 1995 prices and their corresponding prices. Also we need the total
production value in 1995 prices and the corresponding price of production. Such data can be found
more or less entirely in the Danish national accounts, which is already a part of the VAM database for
the DANDY model. The model has 52 sectors and it has been the intention to try to model the factor
demands in all of these sectors. For the purpose of this paper, however, it has been chosen to use an
aggregation of the 13 manufacturing sectors for the estimations1. These 13 sectors account for about
25% of the total output. An overview of the estimation database is given I table 1.

Table 1. Overview of data for the XX aggregate of the 13 manufacturing sectors.
Name Description Unit of

measurement
QY Total output in fixed prices, obtained as an aggregate of the 13 manufacturing

sectors in the output vector in the VAM file
Mill. DKK

PY Price of Y, obtained as the implicit price index from dividing the current price
output in the XX aggregate by the aggregate in fixed prices. Both found in the vam
file.

Index. 1995=1.

QK The capital is the gross capital stock, since in contrast to the net capital stock it
represents the actual productive capacity of the stock. Multiplied by the 1995 value
of usercost (before indexing it) gives the current years use of capital in fixed prices.

Mill. DKK

PK This is by far the most complicated of the data needs. See section x.x for an in
depth description of how to derive it. Usercost series lies between 0 and about 0.12,
so it has been indexed to match the other prices.

Index 1995=1.

QL The labour variable consists of the total amount of hours used by the XX sector to
produce its output. All the years are multiplied by the 1995 hourly wage to give the
fixed price value of labour costs in every year.

Mill. DKK

PL The hourly wages are indexed by the 1995 value, so PL is equal to one in 1995 Index 1995 = 1
QE Extracting the energy producing and energy converting sectors from the columns

of the IO table obtain the energy variable.
Mill. DKK

PE The implicit price index obtained by dividing the current and fixed price values for
QE.

Index 1995=1.

QM Materials, which is the amount of input into production. Obtained by summing the
columns of the IO tables, subtracting the energy QE, and then aggregating into the
XX sector.

Mill. DKK

PM The implicit price index obtained by dividing the current and fixed price values for
QM.

Index 1995 = 1

The derivation of the price on the use of capital PK or the user cost is described in appendix 1. It is
derived as the opportunity cost of holding a unit of capital for one year. It is a rather complex variable
that embodies the price on new investment, the depreciation rate, the interest rate, the tax rate and
other variables.

But lets take a little look at how these variables have developed in the past 30 years or so. We see the
amounts of the factors and the prices, both in levels and compared to the production QY.

                                                
1 Actually, none of the 13 sectors performed better alone than do the aggregate.
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Figure 1. The four Production factors

 The four Production Factors in Levels The four Production Factors in Levels
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Thus, the data are scaled so that units of measurement in all four factors sum to something less than
QY in the base year 1995 both in fixed and current prices. A little margin between Y and the sum of
the factors is left for the capital costs of buildings and for profits. This is also true for current prices
outside the base year, but NOT for fixed prices. This is due to the fact that all factor prices evolve
differently over time reflecting e.g. growth in real wages.

It is very clear that there have been a tremendous decrease in the labour input into this sector. Labour
input measured in hours has decreased by 40% over the period, while at the same time output has
increased by 88%. That is of course also reflected in the intensity of the labour, which has dropped by a
factor 3. The capital intensity have been smoothly increasing during this 30 year period.

The energy intensity is the most time varying component with a slight decreasing tendency. It can be
seen that the energy intensity dropped under the oil crises in 1973/74 and also 1979/80. Since 1980 this
intensity has been quite stable. The intensity of materials is very stable over time.

Figure 2. The Factor prices in levels and deflated with PY

 The four Factor Prices in Levels The four Factor Prices in Levels
 Index 1995 = 1
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 The four Factor Prices, deflated The four Factor Prices, deflated
 Index 1995 = 1
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In figure 2 we can see that the real usercost PK/PY has maintained approximately the same level over
time with some volatility due to, among other things, the development of the interest rate and the
expected inflation in the investment price. The right hand side of the diagram also shows that real
wages has increased significantly by more than a factor 3.

When we look at the factor prices it is no wonder that the use of energy is the most volatile of the four
factors. Around the oil crises we saw huge increases in the prices of energy. The real price on materials
is very stable.

So with these data we will go for a first round of estimates of the system.

4. Estimates, first round

The program TSP is used for the estimation of this system. At this stage G7 could have been used, but
at later stages I found that it was easier to use TSP. The program code can be seen in appendix 2, but it
is not very pleasant reading.

By using the LSQ order in TSP the set of equations (7) above are estimated. Notice that both sides of
the equations are divided by Y to model the factor intensities. The LSQ order is the "general non-linear
least squares multiequation estimator". It uses the maximum likelihood. But since these equations are
perfectly linear, similar results could have been obtained by "Seemingly Unrelated Regression" (SUR) or
2 stage least squares.

Since it can be rather difficult in some situations to make the estimation converge, it helps quite a lot to
set the parameters to some reasonable values rather than just zeros. In this case one would have a good
idea about the size of the parameters (bii's) since they express the share of the factor in question
relative to Y. But if in other cases one does not have any ideas the parameters one might have a better
idea about the size of of the resulting elasticities. Such knowledge is imposed on the procedure by
equations like the following

set bkk=qk(1996:1)/qy(1996:1)*(1+2*  (-0.2)   );

where the right hand side is just a reformulation of of the own price elasticity formula (8). In this case
the number –0.2 is expected to be a reasonable guess of the own price elasticity of capital.

 Here are the first results.

Table 2a. Results from static estimation of GLO model
                         Standard
 Parameter  Estimate        Error       t-statistic   P-value
 BKL        .055833       .362697E-02   15.3938       [.000]
 BKM        -.047580      .349667E-02   -13.6072      [.000]
 BKK        .048505       .540027E-02   8.98196       [.000]
 BKE        .429648E-02   .120811E-02   3.55637       [.000]
 BLM        .326830       .601780E-02   54.3106       [.000]
 BLL        -.069276      .011555       -5.99546      [.000]
 BLE        -.010596      .225837E-02   -4.69195      [.000]
 BEE        .027723       .204280E-02   13.5708       [.000]
 BEM        .012012       .267548E-02   4.48968       [.000]
 BMM        .353630       .866207E-02   40.8251       [.000]
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Table 2b. Static estimation of GLO model
Equation Variable Mean R-squared DW
Eqiok Iok 0.0514 0.95 0.33
Eqiol Iol 0.3859 0.99 0.06
Eqioe Ioe 0.0341 0.76 0.33
Eqiom Iom 0.5930 0.63 0.11

Table 2c. Static estimation of GLO model. Long run elasticities.
PK PL PE PM

K -0.11 0.46  0.04 -0.39
L 0.09 -0.62 -0.02  0.55
E 0.06 -0.15 -0.08  0.17
M -0.04 0.25  0.01 -0.23

We can see that the means in table 2b does not sum to one. Only in the base year 1995 will the four
variables iok-m sum to one. This is due to the different development in prices between the series as
mentioned earlier. It should be obvious that there are some problems in this estimation. Three of the
ten parameters have a negative sign, meaning that the model is not consistent. That is to say, that we
are in for negative demands for one or more of the factors when certain conditions are present. The
elasticities that sum to one across the row, are generally not as one would expect them to be. The eKK is
quite small and some off-diagonal elements other than the expected eKE  and eEK are negative.
Furthermore, when we look at the graphs, we see that this is clearly not desirable

Figure 3. Static estimates of capital and labour share of input in production

 Static estimate of Capital share. Observed and estimated Static estimate of Capital share. Observed and estimated
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 Static estimate of Labour share. Observed and estimated Static estimate of Labour share. Observed and estimated
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The figures tell the story again; this is not good. The capital estimation seems fairly good compared to
the labour which completely misses the point. The estimate is not able to explain the steep fall in the
labour share of input into production.

The graphs of energy and materials are a similar sight
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Figure 3. Static estimates of capital and labour share of input in production
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For energy the model has severe difficulties dealing with the fast substitution away from energy around
1980, and in the fourth graph it can be seen, that the model wants to have a considerable increase in the
share of materials in relation to total input because it the price of it relative to labour is constantly
decreasing. So what can we do to improve on these estimates?

5. Time trends

It is very obvious that the equations above is screaming for some time trends to explain e.g. the
development in labour productivity. So we must introduce that in the equations. One could start by
putting in time in (1) to get

),,,,( tMELKGY = (11)

There are various ways to get t into the equations, but here we will stick to a rather simple solution. We
simply replace the βii 's by the expression β ii + zi*t + zzi*t2 where t off course is a time variable. This
means that we can no longer interpret the  βii 's directly as the shares. Also the price elasticities need to
be changed now. If we slip zi*t + zzi*t2  into the factor demand equations (7) and differentiate them
again, multiply by the price over the level of the factor, and then rearrange the terms, we find that the
cross price elasticities (9) are left unaltered, but the own price elasticities (8) now have turned into

MELKi
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6. Separability

Another thing that is often discussed in relation to factor demand systems is whether the estimation
should be nested such that the division between a fraction of the factors is determined before the
complete system is estimated. As an example one could imagine that the the factors were nested
((KLE)M). That means that at first the division between K, L and E is decided upon. Then the division
between this KLE aggregate and M is determined. With such a structure one would say that the
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function is weakly separable in M. In practice this means that the price PM not affects the relative
distribution between K, L and E, but it could very well affect the levels of them.

Apart from the symmetry restrictions we could consider to lower the number of parameters to be
estimated even further since it is often difficult to estimate this system even with 10 parameters.
Therefore we could impose some separability restrictions on the parameters, meaning that if M is
weakly separable, changes in the price on materials will affect the other factors with equal strength
(equal to the elasticity), so an increase in the price of materials will not affect the COMPOSITION of
the other factors. Such a separability assumption that will save some parameters, can be imposed by
making sure that the cross price elasticities in (9)

EMLMKM eee == (10)

are equal when the prices PK to PM.have the 1996 value. Since the elasticities depend on the relative
factor prices, this restriction cannot be maintained for all values of the explanatory variables over time.
So the restriction can only be imposed for one year. By using (10) one can figure out functions for βKM

and βLM  where they are functions of other prices and betas in order to make them equal to βEM.If βEM

is put equal to zero βKM and βLM will also be zero. In that case we say that M is strongly separable. In
the same way one can figure out the conditions to make other nesting schemes like for instance
((KL)E)M)) or (((KE)L)M). As we shall see later some degree of separability can help a lot on the
easiness of estimation.

7. Estimates, second round

In the next set of estimates, our two new enhancements of the model, namely the time trends and the
weak separability of the materials ( a ((KLE)M) nesting) will be implementet. Furthermore two minor
things are changed. One is that we now only have the i* as the dependent variable and Y is multiplied
on the right hand side. That opens for the possibility to take logarithms of the dependent variable and
on the entire right hand side at the same time. Now the results look like this

Table 3. Static estimation of GLO model with time trends and M weakly separable ((KLE)M)
                          Standard
 Parameter  Estimate        Error       t-statistic   P-value
 BKL        .010540       .010180       1.03542       [.300]
 BLE        .840646E-02   .515945E-02   1.62933       [.103]
 BKE        .114567E-02   .147060E-02   .779046       [.436]
 BEM        -.484169E-03  .382894E-02   -.126450      [.899]
 BKK        .049074       .680491E-02   7.21152       [.000]
 BEE        .022117       .336049E-02   6.58149       [.000]
 ZK         .658407E-03   .222879E-03   2.95410       [.003]
 ZZK        .767653E-06   .846997E-05   .090632       [.928]
 BLL        .243346       .022650       10.7436       [.000]
 ZL         -.106034E-02  .132672E-02   -.799224      [.424]
 ZZL        .493845E-03   .600501E-04   8.22388       [.000]
 ZE         .822433E-04   .220272E-03   .373372       [.709]
 ZZE        .290715E-04   .778995E-05   3.73193       [.000]
 BMM        .625263       .041083       15.2197       [.000]
 ZM         .365100E-02   .637512E-03   5.72696       [.000]
 ZZM        .806507E-04   .230937E-04   3.49233       [.000]



- 11-

11

In the results from the second round of estimates we see that there are only 8 bii 's left to be estimated,
but now we have in addition four sets of two time trend variables that must also be estimated. Now
only one of the b's is negative, so that is an improvement.

Table 2b. Static estimation of GLO model with time trends and M weakly separable ((KLE)M)
Equation Variable Mean R-squared DW
leqk lak 9.758 0.99 0.70
leql lal 11.737 0.91 0.30
leqe lae 9.342 0.75 1.53
leqm lam 12.210 0.99 1.39

Table 2c. Static estimation of GLO model with time trends and M weakly separable ((KLE)M).
Long run elasticities.

PK PL PE PM

K -0.09 0.09  0.01 -0.01
L 0.02 -0.03 0.02  -0.01
E 0.02 0.13 -0.14  -0.01
M 0.00 0.00  0.00 -0.00

We can see that the misspecifikation of the model as indicated by the very low DW statistics in the first
simulation has improved for all four factors, but especially much for energy and materials. Notice now
that that the separability constraint has made the three elasticities eKM , eLM and eEM equal. In general the
elasticities are quite low here, but at least the have the right signs.

The graphical display of the results also show considerable improvements

Figure 3. Static estimates of the demand for capital and labour in production. With time trends
and M weakly separable ((KLE)M).
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 Demand for Labour Demand for Labour
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Now we see that we have got some more reasonable fits. The graphs are not systematically wrong as
was the case in the previous estimate. Apparently the capital estimate fits quite well, but that should not
fool one. When the results are used for calculating investment on the basis of the changes in stock that
can be derived from these estimates we may still see some substantial misses on the observed
investment.
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Figure 4. Static estimates of the demand for energy and materials in production. With time
trends and M weakly separable ((KLE)M).
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In the case of energy we are doing pretty much better now. The estimation did not catch all of the
steep decline in energy demand in 1979 / 1980 but we are doing better than before. Materials are pretty
close to the observed values. Now we must remember that the are static estimates and by that we
assume that the demand for the factors will adapt to their long run level in the very same year. There is
so much evidence that says that this is not true, especially for the capital stock. If e..g an increase in the
general demand increases production Y by 5% the demand for input will increase by 5% since we do
assume here that there are constant returns to scale. So the demand for capital will increase by 5% in
the first year, but investment takes time. So the most likely case is that it will take a number of years
before the capital stock has adapted to this demand shock. Even labour might need some time to adapt
do to labour hoarding effects. In the next section we will specify the model in a dynamic way so as to
allow for an adaptation over time.

8. Dynamic specification

There are various more or less sophisticated ways to introduce dynamics into theses equations. In
figure 5 below there is an illustration of different ways in general to think of the adaptation process. If
we use only the static estimation as above we will go from A to C in one single step. The so-called
"second generation model" will adapt over time along the path between A and C. But it can be seen
that we are on the wrong isoquants for a period of some years. The "third generation model" on the
contrary, will go directly to the correct isoquant, but with a wrong combination of factors. Because
capital is slow to adapt, other factors like materials or maybe labour must compensate for this in the
short run. So they will overreact. That is why we talk about quasi-fixed contrary to flexible factors.

Thomsen(2000) present a short cut to reach a third-generation model quite easily. He is using the long
run function to derive the short run cost function. This is not possible, however, to do analytically with
the Translog and the CES forms. But with the long run GLO it is possible. The trick is first to solve
the quasi fixed factor equations for their own prices. Now this price is called a virtual shadow price, and
when it is substituted into the equations for the flexible factors, they will react according to those prices
and make the sufficient compensation for the slowness in the capital adaptation. This system, however,
can be difficult to estimate and to get to converge, so in this paper we will look at the second
generation model.
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Figure 4a. Difference between second and third generation models

This kind of dynamic behaviour can be introduced by through a standard error-correction model, here
for the capital equation

[ ])log()log()log()log( 1
*
12

*
1 −− −+= KKKDKD λλ (11)

K the observed capital stock
K* the estimated long run value of the capital stock
D first differences
log logarithms
λ1, λ2 parameters

The parameter λ1 gives us the first year effect, while λ2 tell us about the speed of adjustment towards
the new equilibrium. They most both lie in the interval from zero to one. Thus if λ1 is equal to one, the
entire adaptation towards the long run level will take place in the first year. If  λ1 =  λ2 we have a pure
partial model and so (11) can be seen as a generalized partial adaptation model.

For the modelling purpose it is convenient not to have to work with these first differences, so we can
reparametrisize (11) to get an equation in levels (see e.q. Johnston and Dinardo, 1997)

)log()1()log()()log()log( 12
*
112

*
1 −− −+−+= KKKK λλλλ (13)
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which will give us the exactly the same results as by using 11, just in a more convenient way. As we
shall see shortly, such a formulation works particularly fine with energy and materials and to some
extent also Labour. But for Capital we do not get all the autocorrelation out. It is well know that capital
is normally not an I(1) variable meaning that it is stationary, when first differences are taken, but an I(2)
variable. That means that we have to take the second differences to get rid of the trend as well as it can
be seen in this figure

Figure 5
 Demand for capital, first and second differences Demand for capital, first and second differences

  887

  304

 -280

1970 1975 1980 1985 1990 1995

  First_Differences   Second_Differences

To take care of that in the model specification we have a number of possibilities. We could put K and
K* lagged two times in or we could put in the dependent variable lagged once. That means the
dependent variable in (11). This can be done in an equation such as (13) but with other parameter
restrictions and introducing K-2. This construction really help on the estimation in terms of fit and test
statistics. But it turns out that such a construction gives an overshooting in in the estimated kapital
demand meaning that if K* is raised permanently by 1% then the model will start to adapt K gradually
to this new level, but in a number of years in the period between year 1 and the the where K is fully
adapted, K will lie above one.

What turns out to work best, is a rho-construction, which also could be called an AR(1) term. In
principle one introduces the lagged residuals into the model with a parameter rhoK in front. This can
also be included in the model (13). In that case we need to introduce also K-2 and K-2* in the equation
and apply the right parameterization to the equation
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(14)

This in implemented in TSP in the following way

frml dynk log(K) =                   l1k * log(Kstar)
                        +(l2k-l1k-(rhok*l1k)) * log(Kstar(-1))
                             -rhok*(l2k-l1k)) * log(Kstar(-2))
                                +(1-l2k+rhok) * log(K(-1))
                               -rhok*(1-l2k)) * log(K(-2));
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The variable and parameter names here are made up to be close to (14), but the ones that are necessary
for the model can be seen in Appendix 2.

9. Estimates, final round

The model can be solved in two ways now. We have already estimated the equations determining the
long run variables or the "desired" level of the variables. Now we could take those estimates and put
them into the dynamic equations (13) and (14) to get the short run or estimated value of the capital
stock. This would be called the Engle and Granger two step method to solving error correction models
(Engle and Granger, 1987). However, one could also estimate the system of long run equations
simultaneously with the short run estimates to get the overall performance of this system as good as
possible. Such a procedure produces estimates as are shown in table 3

Table 3. Dynamic estimation of GLO model with time trends and M weakly separable
((KLE)M)
                           Standard
 Parameter  Estimate        Error       t-statistic   P-value
 BKL        .046586       .035033       1.32975       [.184]
 BLE        .013625       .748643E-02   1.82001       [.069]
 BKE        -.034873      .765302E-02   -4.55673      [.000]
 BEM        .033338       .555029E-02   6.00655       [.000]
 BKK        -.365442E-02  .034327       -.106459      [.915]
 BEE        .020747       .411828E-02   5.03783       [.000]
 ZK         .315081E-03   .116415E-02   .270654       [.787]
 ZZK        .128385E-04   .493305E-04   .260254       [.795]
 G0K        .070313       .015363       4.57694       [.000]
 RHOK       .113297       .202777       .558727       [.576]
 G1K        .029433       .016363       1.79870       [.072]
 BLL        -.042779      .047888       -.893311      [.372]
 ZL         .108516E-02   .189929E-02   .571352       [.568]
 ZZL        .275333E-03   .891144E-04   3.08966       [.002]
 G0L        .274671       .084288       3.25872       [.001]
 G1L        .584858       .077477       7.54879       [.000]
 ZE         .538706E-03   .328110E-03   1.64185       [.101]
 ZZE        .367714E-04   .122612E-04   2.99901       [.003]
 G0E        .736305       .132355       5.56309       [.000]
 G1E        .484779       .133961       3.61879       [.000]
 BMM        .269322       .058469       4.60626       [.000]
 ZM         .755155E-03   .843709E-03   .895042       [.371]
 ZZM        .143449E-03   .305853E-04   4.69013       [.000]
 G0M        .724659       .155522       4.65954       [.000]
 G1M        1.02665       .067015       15.3198       [.000]

Table 3b. Dynamic estimation of GLO model with time trends and M weakly separable
((KLE)M)
Equation Variable Mean R-squared DW
prek qqk 9.758 0.99 1.88
prel qql 11.737 0.98 1.34
pree qqe 9.342 0.77 1.65
prem qqm 12.210 0.99 1.69
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Table 3c. Dynamic estimation of GLO model with time trends and M weakly separable
((KLE)M). Long run elasticities.

PK PL PE PM

K -0.52 0.28  -0.22 0.46
L 0.09 -0.58 0.03  0.46
E -0.47 0.19 -0.18  0.46
M 0.06 0.19  0.03 -0.28

This is seemingly very good. We have some fairly reasonable elasticities and both DW and R-squared
are  very good. However, there is one problem, which will show up, when we take a look at the
corresponding graphs.

Figure 5. Static estimates of the demand for capital and labour in production. With time trends
and M weakly separable ((KLE)M).
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Figure 6. Static estimates of the demand for energy and materials in production. With time
trends and M weakly separable ((KLE)M).
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We can see from the graphs, that the fits are quite nice now. However, the long run level of capital
demand is 100%-150% above the actual level. The fit is good, but the reason is that the parameter g1k,
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is only 0.029. This parameter gives the first year adaptation of the capital stock to the desired long run
level. So only a 3% closing in on the gap in the first year is probably not something that one would
want in the model. Contrary to the second round of estimates, the parameter bkk is now negative and
very insignificant.

The standard deviation on the g1k parameter is too high to allow one to tie it to something reasonable.

So something is wrong and something has to be done about it.
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Appendix A

This paper is about the user-cost expression in the model. It needs to be rewritten somewhat to make it
more readable. It needs some lists of variables in connection with the equations specified. Although
well hidden, it does actually contain a desription uf the method used.

At the end of the paper I have attached the little G add-file that calculates the expression.

A user-cost expression for Dandy3m

Peter Rørmose, Maryland April 2001
_______________________________________________________________________________

For modelling the demand for capital in a factor demand system, we need a price on capital that reflects
the service comming from one unit of capital in one year. This is most often measured as the
opportunity cost of holdning this unit of capital for one year.  In its most simple form the user cost can
be expressed as

0Φ
= t

t

q
c (1)

where qt is the investment price, and Φ0 is the present value of all the future services from one new unit
of capital. Thus usercost is dependent of the survival curve for the underlying investments. The survival
curve can be assumed to have one out of a vide variety of different forms. It depends on among other
things on the estimated expected lifetime for the investment good in question.

Figure 1. Scrapping and survival curves b(s) og B(s), Winfrey L2, expected lifetime 10 years

This figure shows the expected scrapping curve (< left scale) for an investment good with an expected
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empirical research done by Winfrey some 60 years ago, but the general shape of the curves probably
still applies today.  Thinking about e.g. a car, it makes a lot of sense to see that in the first years of the
life of the car only a couple of percent will be scrapped, this number increasing to approximately when
the expected lifetime is reached, and declining with a very long tail to the right, meaning that some cars
will be as much as 30 years old.

If we wanted a geometric survival function, one example of a scrapping curve could be a constant at
e.g. 10 pct. to give us a smoothly decling survival curve (1, 0.9, 0.81, 0.72 etc.) which, however,  in an
empirical light is a bit hard to believe in. This is important, because it can be shown that only under a
geometrically decling survival curve (1) will resemble the general neocalssical usercost expression

( )ρδ += tt qc (2)

where ρ is a discount rate.

It is a fact that the capital stock data, at least from Statistics Denmark, have not been made with a
geometrically declining survival curve, so instead it can be shown, that if we define the economic
depreciation rate δt as Dnt / Knt-1 we can get the following general formula for usercost
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Thus now the relationship between the net and the gross capital stock is multiplied on the general
neoclassical expression. The ratio of the net capital stock over the gross capital stock is an indicator of
the average age of the capital stock. The newer the stock is in general, the closer the net value is to the
gross value. So the older the stock is the lower the usercost will be. The advantage of this expression is
that we do not have to know anything about the survival curve of the investments made (in principle
they are reflected in the value of Knt and we do not have to make the assumption that it declines
geometrically.

In the following the division by (1+ρ) is skipped2, so now it is only a question of discounting the
service from the capital in period t. The discount rate ρ consists of two terms: an after tax nominal
interest rate and a measure of inflation. As a measure of inflation it is suggested to use the growth rate
of the investment price qt , so now we have
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So now we have the costs of using one unit of capital equipment is – apart from the price – the forgone
rent and the physical depreciation, but on the positive list we now have a possible increase in the price
of the investment good. This probably should be the price on the capital good obtainable on the
market for used capital goods, but for most goods it is rather difficult to get these prices. If we had the
geometric curve it would not matter if we used the price of used or new capital. They would be equal.

                                                
2  In accordance with working papers from Statistics Denmark
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It can be argued that the relevant measure of inflation is more likely to be an expected rate of inflation,
because if the price of capital is expected to rise in the future, so will the capital gains and the usercost
will go down. If the price increases, it is expected that there will also be price increases in the future.
Such an expectation will last for a number of years. To model this we introduce a geometric lag in the
investment price

1
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qππααππ      (5)

According to this equation, the expected rate of inflation is a weighed average of last year's expectation
and the realised inflation in the current year. Thus it is an adaptiv formation of expectations. The speed
of adjustment depends on α. The bigger α is, the longer the adjustment to a new equilibrium will take.

The problem about the implementation of this is the lagged expected rate of inflation on the right hand
side. So we need to generate some data for this variable. Using a moving average form we can write the
model as
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So if we had data for π e and π  we could estimate the parameters α and π e
0 . But we do not know π e .

What can be done is to determine α a priori, and then to look for the value of  π e
0 that gives the most

consistency between the realised and the expected inflation. Letting π e
0 be a parameter in the following

regerssion can do it
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The predicted value of π  from this regression can now be used as a measure for π e .

But we also need to adjust the user cost expression for payment of taxes and for tax credits on in
payments. We need the user cost to be a pre-tax expression, which is the most relevant in an cost
minimization problem where other prices are pre-tax variables too. When the factor demand system is
estimated the relative prices will work as after tax variables anyway.  With what we have now and taxes
included we get the following formula
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Here we have some new variables. First of all we see that the alternative rent r has turned into the
interest rate term (1-s)i . This is due to the fact that the other factor prices comes as pre-tax, the
minimum cost function is homogenous of degree 1 in all factor prices and thus the factor demand
functions are homogenous of degree 0 in those prices.

The variable z is the present value of future depreciation of one capital unit.  Finally the β  is a weight
given to the expected inflation term.  Experiments can be made with that to see what gives the best fits.
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G7 add-file to calculate user cost of capital
(The contents behind the variable names are explained in text above)

f alpha = 0.25
f t = (time-1995)
f pistar = (0.25/(1-alpha))*rpim+(0.25/(1-alpha))
                           *rpim[1]+(0.20/(1-alpha))
                           *rpim[2]+(0.15/(1-alpha))
                           *rpim[3]+(0.10/(1-alpha))
                           *rpim[4]+(0.05/(1-alpha))
                           *rpim[5]
f apowt = @exp(t*@log(alpha))
con 100 0.75 = a1
lim 1967 1997
r rpim = !pistar, apowt
f pie = predic

f beta = 0.75
f uc = (1/(1-tsdsu))*pim*(1-(tsdsu*bivm))*
       (((1-tsdsu)*interest)+deprat-(beta*pie))*(fkn/fkg)
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Appendix B. TSP program.

options crt;
in klem;               ? Reads in databank .tlb
freq a;                ? Frequency of data
smpl 1967,1996;        ? Sample period

?***********************************************************************
set separ=   0;        ? 0=KLEM  1=KLE,M  2=KE,L,M  3=KL,E,M (Weak separability)
set separ1=  0;        ? if M is strongly separable
set separ2=  0;        ? if E is strongly separable
set separ3=  0;        ? if L is strongly separable

set tidk    =0;        ? time in qk equation
set tidtidk =0;        ? time squared in qk equation
set tidl    =0;        ? time in ql equation
set tidtidl =0;        ? time squared in ql equation
set tide    =0;        ? time in qe equation
set tidtide =0;        ? time squared in qe equation
set tidm    =0;        ? time in qm equation
set tidtidm =0;        ? time squared in qm equation
?************************************************************************

genr QY = QY / 1000;
genr QE = QE / 1000;
genr QM = QM / 1000;
genr tid = year - 1995;      ? Generate time variable
set tid_96=tid(1996:1);

dot k l e m;    ? Create parameters. Initial value = 0
  param bk. bl. be. bm.;
  set p._96=p.(1996:1);      ? Create variables for later use in calculation
enddot;                    ? of elasticities

? Give starting values for own-price elasticities
set bkk=qk(1996:1)/qy(1996:1)*(1+2*      (-0.2)          );
set bll=ql(1996:1)/qy(1996:1)*(1+2*      (-0.4)          );
set bee=qe(1996:1)/qy(1996:1)*(1+2*      (-0.1)          );
set bmm=qm(1996:1)/qy(1996:1)*(1+2*      (-0.2)          );

dot k l e m;               ? Divide the variable
  io. = q. / qy;           ?
  lq. = log(q.);
enddot;

dot k l e m;
  if(tid.=1);
  then;
   param z. 0;
  else;
   const z. 0;
  if(tidtid.=1);
  then;
   param zz. 0;
  else;
   const zz. 0;
enddot;

dot k l e m;
 param g0. g1.;
enddot;

param rhok rhol;
?const g1k 0.25;

frml eqiok iok=bkk+zk*tid+zzk*tid**2+
               (bkl*pl**0.5+bke*pe**0.5+bkm*pm**0.5)*pk**(-0.5);
frml eqiol iol=bll+zl*tid+zzl*tid**2+
               (bkl*pk**0.5+ble*pe**0.5+blm*pm**0.5)*pl**(-0.5);
frml eqioe ioe=bee+ze*tid+zze*tid**2+
               (bke*pk**0.5+ble*pl**0.5+bem*pm**0.5)*pe**(-0.5);
frml eqiom iom=bmm+zm*tid+zzm*tid**2+
               (bkm*pk**0.5+blm*pl**0.5+bem*pe**0.5)*pm**(-0.5);
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frml eqk ak = qy*(bkk+zk*tid+zzk*tid**2+
                 (bkl*pl**0.5+bke*pe**0.5+bkm*pm**0.5)*pk**(-0.5));
frml eql al = qy*(bll+zl*tid+zzl*tid**2+
                 (bkl*pk**0.5+ble*pe**0.5+blm*pm**0.5)*pl**(-0.5));
frml eqe ae = qy*(bee+ze*tid+zze*tid**2+
                 (bke*pk**0.5+ble*pl**0.5+bem*pm**0.5)*pe**(-0.5));
frml eqm am = qy*(bmm+zm*tid+zzm*tid**2+
                 (bkm*pk**0.5+blm*pl**0.5+bem*pe**0.5)*pm**(-0.5));

frml prek qqk = (1-g0k+rhok)*lqk(-1)+
                (-rhok*(1-g0k))*lqk(-2)+
                g1k*lak+
                (g0k-g1k-(rhok*g1k))*lak(-1)+
                (-rhok*(g0k-g1k))*lak(-2);
?frml prel qql = (1-g0l+rhol)*lql(-1)+
?                (-rhol*(1-g0l))*lql(-2)+
?                g1l*lal+
?                (g0l-g1l-(rhol*g1l))*lal(-1)+
?                (-rhol*(g0l-g1l))*lal(-2);
frml prel qql = (1-g0l)*lql(-1)+g1l*lal+(g0l-g1l)*lal(-1);
frml pree qqe = (1-g0e)*lqe(-1)+g1e*lae+(g0e-g1e)*lae(-1);
frml prem qqm = (1-g0m)*lqm(-1)+g1m*lam+(g0m-g1m)*lam(-1);

? SEPARABILITY IS APPLIED TO TE RELEVANT PARAMETERS
separab sepkmem seplmem sepklel;
dot k l e m;
  eqsub eqio. sepkmem seplmem sepklel;
  eqsub eq.   sepkmem seplmem sepklel;
  eqsub pre.  sepkmem seplmem sepklel;
enddot;

? If M is to be seperated out
  if(separ1=1);then;do;
  if(separ=1);then;const bem 0;
  if(separ=2);then;const bem 0;
  if(separ=3);then;const blm 0;
enddo;

? Estimation with ble=0 <=> (K,E) eller (K,L) given M separated out
 if(separ2=1);then;const ble 0;
 if(separ3=1);then;const ble 0;

dot k l e m;
  frml leq. la. = log(a.);
  eqsub leq. eq.;
enddot;

dot k l e m;
  eqsub(noprint)pre. leq.;
enddot;

dot k l e m;
  la. = lq.;
  qq. = lq.;
enddot;

smpl 1969,1996;

lsq(noprint maxit=5000 tol=0.000001 hiter=g wname=own step=golden maxsqz=50
       sqztol=0.01)eqiok eqiol eqioe eqiom;
siml(static,tag=io,endog=(iok,iol,ioe,iom))eqiok eqiol eqioe eqiom;
write iok iol ioe iom;

lsq(noprint maxit=5000 tol=0.000001 hiter=g wname=own step=golden maxsqz=50
       sqztol=0.01)leqk leql leqe leqm;
lsq(noprint maxit=10000 tol=0.0001 hiter=g wname=own step=golden maxsqz=50
       sqztol=0.01)prek prel pree prem;

siml(dynam,tag=_lr,endog=(lak lal lae lam))leqk leql leqe leqm;
kstar=exp(lak_lr);
lstar=exp(lal_lr);
estar=exp(lae_lr);
mstar=exp(lam_lr);
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set sepkmem;
set seplmem;
set sepklel;

ela e96 ekk ell eee emm ekl eke ekm
                elk ele elm eek eel eem emk eml eme;
dot k l e m;
  dot k l e m;
    write(file='glo.doc'format=labels)e..;
  enddot;
enddot;

write(file='glo.doc',format='(35h Elasticities in 1996                 )');
write(file='glo.doc',format='(4f7.2)')e96;

siml(dynam,tag=p,endog=(lak lal lae lam qqk qql qqe qqm))
    leqk leql leqe leqm prek prel pree prem;

write lqk,lql,lqe,lqm;
?***********************************************************************************
? PROCEDURES
?***********************************************************************************
proc separab sepkmem seplmem sepklel;

? Three possible nests

if(separ=0);then;do;
? (1) (K,L,E,M)
 frml sepkmem bkm=bkm;
 frml seplmem blm=blm;
 frml sepklel bkl=bkl;
enddo;

if(separ=1);then;do;
? (1) ((K,L,E),M)
 frml sepkmem bkm=1/pkm * pem*bem * (bkk*pkk+bkl*pkl+bke*pke)
          /(bek*pek+bel*pel+bee*pee);
 frml seplmem blm=1/plm * pem*bem * (blk*plk+bll*pll+ble*ple)
          /(bek*pek+bel*pel+bee*pee);
 frml sepklel bkl=bkl;
enddo;

if(separ=2);then;do;
? (2) (((K,E),L),M)
 frml sepkmem bkm=1/pkm * bem*pem * (bkk*pkk+bke*pke)
                                   /(bke*pek+bee*pee);
 frml sepklel bkl=1/pkl * ble*pel * (bkk*pkk+bke*pke)
                                   /(bke*pek+bee*pee);
 frml seplmem blm=1/plm * bem*pem * (bkl*plk+bll*pll+ble*ple)
                                   /(bke*pek+ble*pel+bee*pee);
 eqsub seplmem sepklel;
enddo;

if(separ=3);then;do;
? (3) (((K,L),E),M)
 frml sepkmem bkm=1/pkm * blm*plm * (bkk*pkk+bkl*pkl)
                                   /(bkl*plk+bll*pll);
 frml sepklel bke=1/pke * bel*ple * (bkk*pkk+bkl*pkl)
                                   /(bkl*plk+bll*pll);
 frml seplmem bem=1/pem * blm*plm * (bke*pek+bee*pee+bel*pel)
                                   /(bkl*plk+bel*ple+bll*pll);
 eqsub seplmem sepklel;
enddo;

frml s1 blk=bkl;
frml s2 bek=bke;
frml s3 bel=ble;
frml s4 bmk=bkm;
frml s5 bml=blm;
frml s6 bme=bem;

frml ss1  pkk=1;
frml ss2  pkl=sqrt(pl/pk);
frml ss3  pke=sqrt(pe/pk);
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frml ss4  pkm=sqrt(pm/pk);

frml ss5  plk=sqrt(pk/pl);
frml ss6  pll=1;
frml ss7  ple=sqrt(pe/pl);
frml ss8  plm=sqrt(pm/pl);

frml ss9  pek=sqrt(pk/pe);
frml ss10 pel=sqrt(pl/pe);
frml ss11 pee=1;
frml ss12 pem=sqrt(pm/pe);

frml ss13 pmk=sqrt(pk/pm);
frml ss14 pml=sqrt(pl/pm);
frml ss15 pme=sqrt(pe/pm);
frml ss16 pmm=1;

frml sss1 pk=pk_96;
frml sss2 pl=pl_96;
frml sss3 pe=pe_96;
frml sss4 pm=pm_96;

eqsub(print) sepklel s1-s6 ss1-ss16 sss1-sss4;
eqsub(print) sepkmem s1-s6 ss1-ss16 sss1-sss4;
eqsub(print) seplmem s1-s6 ss1-ss16 sss1-sss4;

endproc;

? ----------------L0NG RUN ELASTICITIES------------------------
proc ela e96 ekk ell eee emm ekl eke
                 ekm elk ele elm eek eel eem emk eml eme;

frml elakk ekk=-0.5*(1-(bkk+zk*tid_96+zzk*tid_96*tid_96)*qy/kstar);
frml elall ell=-0.5*(1-(bll+zl*tid_96+zzl*tid_96*tid_96)*qy/lstar);
frml elaee eee=-0.5*(1-(bee+ze*tid_96+zze*tid_96*tid_96)*qy/estar);
frml elamm emm=-0.5*(1-(bmm+zm*tid_96+zzm*tid_96*tid_96)*qy/mstar);
frml elakl ekl=0.5*(qy/kstar)*bkl*sqrt(pl/pk);
frml elake eke=0.5*(qy/kstar)*bke*sqrt(pe/pk);
frml elakm ekm=0.5*(qy/kstar)*bkm*sqrt(pm/pk);
frml elalk elk=0.5*(qy/lstar)*bkl*sqrt(pk/pl);
frml elale ele=0.5*(qy/lstar)*ble*sqrt(pe/pl);
frml elalm elm=0.5*(qy/lstar)*blm*sqrt(pm/pl);
frml elaek eek=0.5*(qy/estar)*bke*sqrt(pk/pe);
frml elael eel=0.5*(qy/estar)*ble*sqrt(pl/pe);
frml elaem eem=0.5*(qy/estar)*bem*sqrt(pm/pe);
frml elamk emk=0.5*(qy/mstar)*bkm*sqrt(pk/pm);
frml elaml eml=0.5*(qy/mstar)*blm*sqrt(pl/pm);
frml elame eme=0.5*(qy/mstar)*bem*sqrt(pe/pm);

dot k l e m;
  dot k l e m;
    genr ela..;
  enddot;
enddot;

load(nrow=4,ncol=4,type=general)e96;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
set e96(1,1)=ekk(1996:1);
set e96(1,2)=ekl(1996:1);
set e96(1,3)=eke(1996:1);
set e96(1,4)=ekm(1996:1);
set e96(2,1)=elk(1996:1);
set e96(2,2)=ell(1996:1);
set e96(2,3)=ele(1996:1);
set e96(2,4)=elm(1996:1);
set e96(3,1)=eek(1996:1);
set e96(3,2)=eel(1996:1);
set e96(3,3)=eee(1996:1);
set e96(3,4)=eem(1996:1);
set e96(4,1)=emk(1996:1);
set e96(4,2)=eml(1996:1);
set e96(4,3)=eme(1996:1);
set e96(4,4)=emm(1996:1);
endproc;


